MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Visualization version   GIF version

Theorem fsnunfv 6940
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5845 . . . . . . . . 9 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
2 incom 4106 . . . . . . . . 9 ({𝑋} ∩ dom 𝐹) = (dom 𝐹 ∩ {𝑋})
31, 2eqtri 2781 . . . . . . . 8 dom (𝐹 ↾ {𝑋}) = (dom 𝐹 ∩ {𝑋})
4 disjsn 4604 . . . . . . . . 9 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
54biimpri 231 . . . . . . . 8 𝑋 ∈ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
63, 5syl5eq 2805 . . . . . . 7 𝑋 ∈ dom 𝐹 → dom (𝐹 ↾ {𝑋}) = ∅)
763ad2ant3 1132 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → dom (𝐹 ↾ {𝑋}) = ∅)
8 relres 5852 . . . . . . 7 Rel (𝐹 ↾ {𝑋})
9 reldm0 5769 . . . . . . 7 (Rel (𝐹 ↾ {𝑋}) → ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅))
108, 9ax-mp 5 . . . . . 6 ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅)
117, 10sylibr 237 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ {𝑋}) = ∅)
12 fnsng 6387 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
13123adant3 1129 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
14 fnresdm 6449 . . . . . 6 ({⟨𝑋, 𝑌⟩} Fn {𝑋} → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1513, 14syl 17 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1611, 15uneq12d 4069 . . . 4 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋})) = (∅ ∪ {⟨𝑋, 𝑌⟩}))
17 resundir 5838 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋}))
18 uncom 4058 . . . . 5 (∅ ∪ {⟨𝑋, 𝑌⟩}) = ({⟨𝑋, 𝑌⟩} ∪ ∅)
19 un0 4286 . . . . 5 ({⟨𝑋, 𝑌⟩} ∪ ∅) = {⟨𝑋, 𝑌⟩}
2018, 19eqtr2i 2782 . . . 4 {⟨𝑋, 𝑌⟩} = (∅ ∪ {⟨𝑋, 𝑌⟩})
2116, 17, 203eqtr4g 2818 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
2221fveq1d 6660 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋))
23 snidg 4556 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
24233ad2ant1 1130 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ {𝑋})
2524fvresd 6678 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
26 fvsng 6933 . . 3 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
27263adant3 1129 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
2822, 25, 273eqtr3d 2801 1 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  cun 3856  cin 3857  c0 4225  {csn 4522  cop 4528  dom cdm 5524  cres 5526  Rel wrel 5529   Fn wfn 6330  cfv 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-res 5536  df-iota 6294  df-fun 6337  df-fn 6338  df-fv 6343
This theorem is referenced by:  hashf1lem1  13864  hashf1lem1OLD  13865  cats1un  14130  fvsetsid  16573  islindf4  20603  wlkp1lem3  27564  wlkp1lem7  27568  wlkp1lem8  27569  eupth2eucrct  28101  mapfzcons2  40033  fnchoice  42031  nnsum4primeseven  44685  nnsum4primesevenALTV  44686
  Copyright terms: Public domain W3C validator