MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Visualization version   GIF version

Theorem fsnunfv 7164
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5986 . . . . . . . . 9 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
2 incom 4175 . . . . . . . . 9 ({𝑋} ∩ dom 𝐹) = (dom 𝐹 ∩ {𝑋})
31, 2eqtri 2753 . . . . . . . 8 dom (𝐹 ↾ {𝑋}) = (dom 𝐹 ∩ {𝑋})
4 disjsn 4678 . . . . . . . . 9 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
54biimpri 228 . . . . . . . 8 𝑋 ∈ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
63, 5eqtrid 2777 . . . . . . 7 𝑋 ∈ dom 𝐹 → dom (𝐹 ↾ {𝑋}) = ∅)
763ad2ant3 1135 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → dom (𝐹 ↾ {𝑋}) = ∅)
8 relres 5979 . . . . . . 7 Rel (𝐹 ↾ {𝑋})
9 reldm0 5894 . . . . . . 7 (Rel (𝐹 ↾ {𝑋}) → ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅))
108, 9ax-mp 5 . . . . . 6 ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅)
117, 10sylibr 234 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ {𝑋}) = ∅)
12 fnsng 6571 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
13123adant3 1132 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
14 fnresdm 6640 . . . . . 6 ({⟨𝑋, 𝑌⟩} Fn {𝑋} → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1513, 14syl 17 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1611, 15uneq12d 4135 . . . 4 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋})) = (∅ ∪ {⟨𝑋, 𝑌⟩}))
17 resundir 5968 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋}))
18 uncom 4124 . . . . 5 (∅ ∪ {⟨𝑋, 𝑌⟩}) = ({⟨𝑋, 𝑌⟩} ∪ ∅)
19 un0 4360 . . . . 5 ({⟨𝑋, 𝑌⟩} ∪ ∅) = {⟨𝑋, 𝑌⟩}
2018, 19eqtr2i 2754 . . . 4 {⟨𝑋, 𝑌⟩} = (∅ ∪ {⟨𝑋, 𝑌⟩})
2116, 17, 203eqtr4g 2790 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
2221fveq1d 6863 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋))
23 snidg 4627 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
24233ad2ant1 1133 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ {𝑋})
2524fvresd 6881 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
26 fvsng 7157 . . 3 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
27263adant3 1132 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
2822, 25, 273eqtr3d 2773 1 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cun 3915  cin 3916  c0 4299  {csn 4592  cop 4598  dom cdm 5641  cres 5643  Rel wrel 5646   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  f1ounsn  7250  hashf1lem1  14427  cats1un  14693  fvsetsid  17145  islindf4  21754  wlkp1lem3  29610  wlkp1lem7  29614  wlkp1lem8  29615  eupth2eucrct  30153  mapfzcons2  42714  fnchoice  45030  nnsum4primeseven  47805  nnsum4primesevenALTV  47806  isubgr3stgrlem3  47971
  Copyright terms: Public domain W3C validator