MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Visualization version   GIF version

Theorem fsnunfv 7041
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5902 . . . . . . . . 9 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
2 incom 4131 . . . . . . . . 9 ({𝑋} ∩ dom 𝐹) = (dom 𝐹 ∩ {𝑋})
31, 2eqtri 2766 . . . . . . . 8 dom (𝐹 ↾ {𝑋}) = (dom 𝐹 ∩ {𝑋})
4 disjsn 4644 . . . . . . . . 9 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
54biimpri 227 . . . . . . . 8 𝑋 ∈ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
63, 5eqtrid 2790 . . . . . . 7 𝑋 ∈ dom 𝐹 → dom (𝐹 ↾ {𝑋}) = ∅)
763ad2ant3 1133 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → dom (𝐹 ↾ {𝑋}) = ∅)
8 relres 5909 . . . . . . 7 Rel (𝐹 ↾ {𝑋})
9 reldm0 5826 . . . . . . 7 (Rel (𝐹 ↾ {𝑋}) → ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅))
108, 9ax-mp 5 . . . . . 6 ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅)
117, 10sylibr 233 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ {𝑋}) = ∅)
12 fnsng 6470 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
13123adant3 1130 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
14 fnresdm 6535 . . . . . 6 ({⟨𝑋, 𝑌⟩} Fn {𝑋} → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1513, 14syl 17 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1611, 15uneq12d 4094 . . . 4 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋})) = (∅ ∪ {⟨𝑋, 𝑌⟩}))
17 resundir 5895 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋}))
18 uncom 4083 . . . . 5 (∅ ∪ {⟨𝑋, 𝑌⟩}) = ({⟨𝑋, 𝑌⟩} ∪ ∅)
19 un0 4321 . . . . 5 ({⟨𝑋, 𝑌⟩} ∪ ∅) = {⟨𝑋, 𝑌⟩}
2018, 19eqtr2i 2767 . . . 4 {⟨𝑋, 𝑌⟩} = (∅ ∪ {⟨𝑋, 𝑌⟩})
2116, 17, 203eqtr4g 2804 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
2221fveq1d 6758 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋))
23 snidg 4592 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
24233ad2ant1 1131 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ {𝑋})
2524fvresd 6776 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
26 fvsng 7034 . . 3 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
27263adant3 1130 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
2822, 25, 273eqtr3d 2786 1 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  cun 3881  cin 3882  c0 4253  {csn 4558  cop 4564  dom cdm 5580  cres 5582  Rel wrel 5585   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  hashf1lem1  14096  hashf1lem1OLD  14097  cats1un  14362  fvsetsid  16797  islindf4  20955  wlkp1lem3  27945  wlkp1lem7  27949  wlkp1lem8  27950  eupth2eucrct  28482  mapfzcons2  40457  fnchoice  42461  nnsum4primeseven  45140  nnsum4primesevenALTV  45141
  Copyright terms: Public domain W3C validator