Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6519 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 6520 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 3973 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 5921 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 583 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fnima 6547 fresin 6627 resasplit 6628 fresaunres2 6630 fvreseq1 6898 fnsnr 7019 fninfp 7028 fnsnsplit 7038 fsnunfv 7041 fsnunres 7042 fnsuppeq0 7979 mapunen 8882 dif1enlem 8905 fnfi 8925 canthp1lem2 10340 fseq1p1m1 13259 facnn 13917 fac0 13918 hashgval 13975 hashinf 13977 rlimres 15195 lo1res 15196 rlimresb 15202 isercolllem2 15305 isercoll 15307 ruclem4 15871 fsets 16798 sscres 17452 sscid 17453 gsumzres 19425 rnrhmsubrg 19971 pwssplit1 20236 zzngim 20672 ptuncnv 22866 ptcmpfi 22872 tsmsres 23203 imasdsf1olem 23434 tmslem 23543 tmslemOLD 23544 tmsxms 23548 imasf1oxms 23551 prdsxms 23592 tmsxps 23598 tmsxpsmopn 23599 isngp2 23659 tngngp2 23722 cnfldms 23845 cncms 24424 cnfldcusp 24426 mbfres2 24714 dvres 24980 dvres3a 24983 cpnres 25006 dvmptres3 25025 dvlip2 25064 dvgt0lem2 25072 dvne0 25080 rlimcnp2 26021 jensen 26043 eupthvdres 28500 sspg 28991 ssps 28993 sspn 28999 hhsssh 29532 fnresin 30862 padct 30956 ffsrn 30966 resf1o 30967 gsumle 31252 symgcom 31254 cycpmconjvlem 31310 cycpmconjslem1 31323 nsgqusf1o 31503 cnrrext 31860 indf1ofs 31894 eulerpartlemt 32238 subfacp1lem3 33044 subfacp1lem5 33046 cvmliftlem11 33157 poimirlem9 35713 mapfzcons1 40455 eq0rabdioph 40514 eldioph4b 40549 diophren 40551 pwssplit4 40830 dvresntr 43349 sge0split 43837 |
Copyright terms: Public domain | W3C validator |