![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6671 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 6672 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 4054 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 6042 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-res 5701 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fnima 6699 fresin 6778 resasplit 6779 fresaunres2 6781 fvreseq1 7059 fnsnr 7185 fninfp 7194 fnsnsplit 7204 fsnunfv 7207 fsnunres 7208 fnsuppeq0 8216 mapunen 9185 dif1enlem 9195 dif1enlemOLD 9196 fnfi 9216 canthp1lem2 10691 fseq1p1m1 13635 facnn 14311 fac0 14312 hashgval 14369 hashinf 14371 rlimres 15591 lo1res 15592 rlimresb 15598 isercolllem2 15699 isercoll 15701 ruclem4 16267 fsets 17203 sscres 17871 sscid 17872 gsumzres 19942 pwssplit1 21076 zzngim 21589 ptuncnv 23831 ptcmpfi 23837 tsmsres 24168 imasdsf1olem 24399 tmslem 24510 tmslemOLD 24511 tmsxms 24515 imasf1oxms 24518 prdsxms 24559 tmsxps 24565 tmsxpsmopn 24566 isngp2 24626 tngngp2 24689 cnfldms 24812 cncms 25403 cnfldcusp 25405 mbfres2 25694 dvres 25961 dvres3a 25964 cpnres 25988 dvmptres3 26009 dvlip2 26049 dvgt0lem2 26057 dvne0 26065 rlimcnp2 27024 jensen 27047 eupthvdres 30264 sspg 30757 ssps 30759 sspn 30765 hhsssh 31298 fnresin 32643 padct 32737 ffsrn 32747 resf1o 32748 gsumle 33084 symgcom 33086 cycpmconjvlem 33144 cycpmconjslem1 33157 nsgqusf1o 33424 ply1degltdimlem 33650 cnrrext 33973 indf1ofs 34007 eulerpartlemt 34353 subfacp1lem3 35167 subfacp1lem5 35169 cvmliftlem11 35280 poimirlem9 37616 dvun 42368 mapfzcons1 42705 eq0rabdioph 42764 eldioph4b 42799 diophren 42801 pwssplit4 43078 tfsconcatrev 43338 dvresntr 45874 sge0split 46365 |
Copyright terms: Public domain | W3C validator |