| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6584 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6585 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 3994 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 5973 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 dom cdm 5619 ↾ cres 5621 Rel wrel 5624 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-res 5631 df-fun 6484 df-fn 6485 |
| This theorem is referenced by: fnima 6612 fresin 6693 resasplit 6694 fresaunres2 6696 fvreseq1 6973 fnsnr 7099 fninfp 7110 fnsnsplit 7120 fsnunfv 7123 fsnunres 7124 fnsuppeq0 8125 mapunen 9063 dif1enlem 9073 fnfi 9092 canthp1lem2 10547 fseq1p1m1 13501 facnn 14182 fac0 14183 hashgval 14240 hashinf 14242 rlimres 15465 lo1res 15466 rlimresb 15472 isercolllem2 15573 isercoll 15575 ruclem4 16143 fsets 17080 sscres 17730 sscid 17731 gsumzres 19788 gsumle 20024 pwssplit1 20963 zzngim 21459 ptuncnv 23692 ptcmpfi 23698 tsmsres 24029 imasdsf1olem 24259 tmslem 24368 tmsxms 24372 imasf1oxms 24375 prdsxms 24416 tmsxps 24422 tmsxpsmopn 24423 isngp2 24483 tngngp2 24538 cnfldms 24661 cncms 25253 cnfldcusp 25255 mbfres2 25544 dvres 25810 dvres3a 25813 cpnres 25837 dvmptres3 25858 dvlip2 25898 dvgt0lem2 25906 dvne0 25914 rlimcnp2 26874 jensen 26897 eupthvdres 30179 sspg 30672 ssps 30674 sspn 30680 hhsssh 31213 fnresin 32568 padct 32662 ffsrn 32672 resf1o 32673 indf1ofs 32809 symgcom 33025 cycpmconjvlem 33083 cycpmconjslem1 33096 nsgqusf1o 33353 ply1degltdimlem 33589 cnrrext 33977 eulerpartlemt 34339 subfacp1lem3 35155 subfacp1lem5 35157 cvmliftlem11 35268 poimirlem9 37609 dvun 42332 mapfzcons1 42690 eq0rabdioph 42749 eldioph4b 42784 diophren 42786 pwssplit4 43062 tfsconcatrev 43321 dvresntr 45899 sge0split 46390 imaidfu2 49096 |
| Copyright terms: Public domain | W3C validator |