| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6645 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6646 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 4022 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 6014 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3931 dom cdm 5659 ↾ cres 5661 Rel wrel 5664 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dm 5669 df-res 5671 df-fun 6538 df-fn 6539 |
| This theorem is referenced by: fnima 6673 fresin 6752 resasplit 6753 fresaunres2 6755 fvreseq1 7034 fnsnr 7160 fninfp 7171 fnsnsplit 7181 fsnunfv 7184 fsnunres 7185 fnsuppeq0 8196 mapunen 9165 dif1enlem 9175 dif1enlemOLD 9176 fnfi 9197 canthp1lem2 10672 fseq1p1m1 13620 facnn 14298 fac0 14299 hashgval 14356 hashinf 14358 rlimres 15579 lo1res 15580 rlimresb 15586 isercolllem2 15687 isercoll 15689 ruclem4 16257 fsets 17193 sscres 17841 sscid 17842 gsumzres 19895 pwssplit1 21022 zzngim 21518 ptuncnv 23750 ptcmpfi 23756 tsmsres 24087 imasdsf1olem 24317 tmslem 24426 tmsxms 24430 imasf1oxms 24433 prdsxms 24474 tmsxps 24480 tmsxpsmopn 24481 isngp2 24541 tngngp2 24596 cnfldms 24719 cncms 25312 cnfldcusp 25314 mbfres2 25603 dvres 25869 dvres3a 25872 cpnres 25896 dvmptres3 25917 dvlip2 25957 dvgt0lem2 25965 dvne0 25973 rlimcnp2 26933 jensen 26956 eupthvdres 30221 sspg 30714 ssps 30716 sspn 30722 hhsssh 31255 fnresin 32609 padct 32702 ffsrn 32711 resf1o 32712 indf1ofs 32848 gsumle 33097 symgcom 33099 cycpmconjvlem 33157 cycpmconjslem1 33170 nsgqusf1o 33436 ply1degltdimlem 33667 cnrrext 34046 eulerpartlemt 34408 subfacp1lem3 35209 subfacp1lem5 35211 cvmliftlem11 35322 poimirlem9 37658 dvun 42369 mapfzcons1 42707 eq0rabdioph 42766 eldioph4b 42801 diophren 42803 pwssplit4 43080 tfsconcatrev 43339 dvresntr 45914 sge0split 46405 imaidfu2 49037 |
| Copyright terms: Public domain | W3C validator |