| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6583 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6584 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 3988 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 5970 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnima 6611 fresin 6692 resasplit 6693 fresaunres2 6695 fvreseq1 6972 fnsnr 7097 fninfp 7108 fnsnsplit 7118 fsnunfv 7121 fsnunres 7122 fnsuppeq0 8122 mapunen 9059 dif1enlem 9069 fnfi 9087 canthp1lem2 10544 fseq1p1m1 13498 facnn 14182 fac0 14183 hashgval 14240 hashinf 14242 rlimres 15465 lo1res 15466 rlimresb 15472 isercolllem2 15573 isercoll 15575 ruclem4 16143 fsets 17080 sscres 17730 sscid 17731 gsumzres 19821 gsumle 20057 pwssplit1 20993 zzngim 21489 ptuncnv 23722 ptcmpfi 23728 tsmsres 24059 imasdsf1olem 24288 tmslem 24397 tmsxms 24401 imasf1oxms 24404 prdsxms 24445 tmsxps 24451 tmsxpsmopn 24452 isngp2 24512 tngngp2 24567 cnfldms 24690 cncms 25282 cnfldcusp 25284 mbfres2 25573 dvres 25839 dvres3a 25842 cpnres 25866 dvmptres3 25887 dvlip2 25927 dvgt0lem2 25935 dvne0 25943 rlimcnp2 26903 jensen 26926 eupthvdres 30215 sspg 30708 ssps 30710 sspn 30716 hhsssh 31249 fnresin 32607 padct 32701 ffsrn 32711 resf1o 32713 indf1ofs 32847 symgcom 33052 cycpmconjvlem 33110 cycpmconjslem1 33123 nsgqusf1o 33381 ply1degltdimlem 33635 cnrrext 34023 eulerpartlemt 34384 subfacp1lem3 35226 subfacp1lem5 35228 cvmliftlem11 35339 poimirlem9 37677 dvun 42400 mapfzcons1 42758 eq0rabdioph 42817 eldioph4b 42852 diophren 42854 pwssplit4 43130 tfsconcatrev 43389 dvresntr 45964 sge0split 46455 imaidfu2 49151 |
| Copyright terms: Public domain | W3C validator |