| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6620 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6621 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 4005 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 5993 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnima 6648 fresin 6729 resasplit 6730 fresaunres2 6732 fvreseq1 7011 fnsnr 7137 fninfp 7148 fnsnsplit 7158 fsnunfv 7161 fsnunres 7162 fnsuppeq0 8171 mapunen 9110 dif1enlem 9120 dif1enlemOLD 9121 fnfi 9142 canthp1lem2 10606 fseq1p1m1 13559 facnn 14240 fac0 14241 hashgval 14298 hashinf 14300 rlimres 15524 lo1res 15525 rlimresb 15531 isercolllem2 15632 isercoll 15634 ruclem4 16202 fsets 17139 sscres 17785 sscid 17786 gsumzres 19839 pwssplit1 20966 zzngim 21462 ptuncnv 23694 ptcmpfi 23700 tsmsres 24031 imasdsf1olem 24261 tmslem 24370 tmsxms 24374 imasf1oxms 24377 prdsxms 24418 tmsxps 24424 tmsxpsmopn 24425 isngp2 24485 tngngp2 24540 cnfldms 24663 cncms 25255 cnfldcusp 25257 mbfres2 25546 dvres 25812 dvres3a 25815 cpnres 25839 dvmptres3 25860 dvlip2 25900 dvgt0lem2 25908 dvne0 25916 rlimcnp2 26876 jensen 26899 eupthvdres 30164 sspg 30657 ssps 30659 sspn 30665 hhsssh 31198 fnresin 32550 padct 32643 ffsrn 32652 resf1o 32653 indf1ofs 32789 gsumle 33038 symgcom 33040 cycpmconjvlem 33098 cycpmconjslem1 33111 nsgqusf1o 33387 ply1degltdimlem 33618 cnrrext 34000 eulerpartlemt 34362 subfacp1lem3 35169 subfacp1lem5 35171 cvmliftlem11 35282 poimirlem9 37623 dvun 42347 mapfzcons1 42705 eq0rabdioph 42764 eldioph4b 42799 diophren 42801 pwssplit4 43078 tfsconcatrev 43337 dvresntr 45916 sge0split 46407 imaidfu2 49100 |
| Copyright terms: Public domain | W3C validator |