| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6602 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6603 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 4002 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 5982 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fnima 6630 fresin 6711 resasplit 6712 fresaunres2 6714 fvreseq1 6993 fnsnr 7119 fninfp 7130 fnsnsplit 7140 fsnunfv 7143 fsnunres 7144 fnsuppeq0 8148 mapunen 9087 dif1enlem 9097 dif1enlemOLD 9098 fnfi 9119 canthp1lem2 10582 fseq1p1m1 13535 facnn 14216 fac0 14217 hashgval 14274 hashinf 14276 rlimres 15500 lo1res 15501 rlimresb 15507 isercolllem2 15608 isercoll 15610 ruclem4 16178 fsets 17115 sscres 17761 sscid 17762 gsumzres 19815 pwssplit1 20942 zzngim 21438 ptuncnv 23670 ptcmpfi 23676 tsmsres 24007 imasdsf1olem 24237 tmslem 24346 tmsxms 24350 imasf1oxms 24353 prdsxms 24394 tmsxps 24400 tmsxpsmopn 24401 isngp2 24461 tngngp2 24516 cnfldms 24639 cncms 25231 cnfldcusp 25233 mbfres2 25522 dvres 25788 dvres3a 25791 cpnres 25815 dvmptres3 25836 dvlip2 25876 dvgt0lem2 25884 dvne0 25892 rlimcnp2 26852 jensen 26875 eupthvdres 30137 sspg 30630 ssps 30632 sspn 30638 hhsssh 31171 fnresin 32523 padct 32616 ffsrn 32625 resf1o 32626 indf1ofs 32762 gsumle 33011 symgcom 33013 cycpmconjvlem 33071 cycpmconjslem1 33084 nsgqusf1o 33360 ply1degltdimlem 33591 cnrrext 33973 eulerpartlemt 34335 subfacp1lem3 35142 subfacp1lem5 35144 cvmliftlem11 35255 poimirlem9 37596 dvun 42320 mapfzcons1 42678 eq0rabdioph 42737 eldioph4b 42772 diophren 42774 pwssplit4 43051 tfsconcatrev 43310 dvresntr 45889 sge0split 46380 imaidfu2 49073 |
| Copyright terms: Public domain | W3C validator |