| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6670 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6671 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 4042 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 6040 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3951 dom cdm 5685 ↾ cres 5687 Rel wrel 5690 Fn wfn 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-dm 5695 df-res 5697 df-fun 6563 df-fn 6564 |
| This theorem is referenced by: fnima 6698 fresin 6777 resasplit 6778 fresaunres2 6780 fvreseq1 7059 fnsnr 7185 fninfp 7194 fnsnsplit 7204 fsnunfv 7207 fsnunres 7208 fnsuppeq0 8217 mapunen 9186 dif1enlem 9196 dif1enlemOLD 9197 fnfi 9218 canthp1lem2 10693 fseq1p1m1 13638 facnn 14314 fac0 14315 hashgval 14372 hashinf 14374 rlimres 15594 lo1res 15595 rlimresb 15601 isercolllem2 15702 isercoll 15704 ruclem4 16270 fsets 17206 sscres 17867 sscid 17868 gsumzres 19927 pwssplit1 21058 zzngim 21571 ptuncnv 23815 ptcmpfi 23821 tsmsres 24152 imasdsf1olem 24383 tmslem 24494 tmslemOLD 24495 tmsxms 24499 imasf1oxms 24502 prdsxms 24543 tmsxps 24549 tmsxpsmopn 24550 isngp2 24610 tngngp2 24673 cnfldms 24796 cncms 25389 cnfldcusp 25391 mbfres2 25680 dvres 25946 dvres3a 25949 cpnres 25973 dvmptres3 25994 dvlip2 26034 dvgt0lem2 26042 dvne0 26050 rlimcnp2 27009 jensen 27032 eupthvdres 30254 sspg 30747 ssps 30749 sspn 30755 hhsssh 31288 fnresin 32636 padct 32731 ffsrn 32740 resf1o 32741 indf1ofs 32851 gsumle 33101 symgcom 33103 cycpmconjvlem 33161 cycpmconjslem1 33174 nsgqusf1o 33444 ply1degltdimlem 33673 cnrrext 34011 eulerpartlemt 34373 subfacp1lem3 35187 subfacp1lem5 35189 cvmliftlem11 35300 poimirlem9 37636 dvun 42389 mapfzcons1 42728 eq0rabdioph 42787 eldioph4b 42822 diophren 42824 pwssplit4 43101 tfsconcatrev 43361 dvresntr 45933 sge0split 46424 |
| Copyright terms: Public domain | W3C validator |