Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6535 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 6536 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 3977 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 5932 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fnima 6563 fresin 6643 resasplit 6644 fresaunres2 6646 fvreseq1 6916 fnsnr 7037 fninfp 7046 fnsnsplit 7056 fsnunfv 7059 fsnunres 7060 fnsuppeq0 8008 mapunen 8933 dif1enlem 8943 fnfi 8964 canthp1lem2 10409 fseq1p1m1 13330 facnn 13989 fac0 13990 hashgval 14047 hashinf 14049 rlimres 15267 lo1res 15268 rlimresb 15274 isercolllem2 15377 isercoll 15379 ruclem4 15943 fsets 16870 sscres 17535 sscid 17536 gsumzres 19510 rnrhmsubrg 20056 pwssplit1 20321 zzngim 20760 ptuncnv 22958 ptcmpfi 22964 tsmsres 23295 imasdsf1olem 23526 tmslem 23637 tmslemOLD 23638 tmsxms 23642 imasf1oxms 23645 prdsxms 23686 tmsxps 23692 tmsxpsmopn 23693 isngp2 23753 tngngp2 23816 cnfldms 23939 cncms 24519 cnfldcusp 24521 mbfres2 24809 dvres 25075 dvres3a 25078 cpnres 25101 dvmptres3 25120 dvlip2 25159 dvgt0lem2 25167 dvne0 25175 rlimcnp2 26116 jensen 26138 eupthvdres 28599 sspg 29090 ssps 29092 sspn 29098 hhsssh 29631 fnresin 30961 padct 31054 ffsrn 31064 resf1o 31065 gsumle 31350 symgcom 31352 cycpmconjvlem 31408 cycpmconjslem1 31421 nsgqusf1o 31601 cnrrext 31960 indf1ofs 31994 eulerpartlemt 32338 subfacp1lem3 33144 subfacp1lem5 33146 cvmliftlem11 33257 poimirlem9 35786 mapfzcons1 40539 eq0rabdioph 40598 eldioph4b 40633 diophren 40635 pwssplit4 40914 dvresntr 43459 sge0split 43947 |
Copyright terms: Public domain | W3C validator |