![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version |
Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6681 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | fndm 6682 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | eqimss 4067 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
5 | relssres 6051 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
6 | 1, 4, 5 | syl2anc 583 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-res 5712 df-fun 6575 df-fn 6576 |
This theorem is referenced by: fnima 6710 fresin 6790 resasplit 6791 fresaunres2 6793 fvreseq1 7072 fnsnr 7199 fninfp 7208 fnsnsplit 7218 fsnunfv 7221 fsnunres 7222 fnsuppeq0 8233 mapunen 9212 dif1enlem 9222 dif1enlemOLD 9223 fnfi 9244 canthp1lem2 10722 fseq1p1m1 13658 facnn 14324 fac0 14325 hashgval 14382 hashinf 14384 rlimres 15604 lo1res 15605 rlimresb 15611 isercolllem2 15714 isercoll 15716 ruclem4 16282 fsets 17216 sscres 17884 sscid 17885 gsumzres 19951 pwssplit1 21081 zzngim 21594 ptuncnv 23836 ptcmpfi 23842 tsmsres 24173 imasdsf1olem 24404 tmslem 24515 tmslemOLD 24516 tmsxms 24520 imasf1oxms 24523 prdsxms 24564 tmsxps 24570 tmsxpsmopn 24571 isngp2 24631 tngngp2 24694 cnfldms 24817 cncms 25408 cnfldcusp 25410 mbfres2 25699 dvres 25966 dvres3a 25969 cpnres 25993 dvmptres3 26014 dvlip2 26054 dvgt0lem2 26062 dvne0 26070 rlimcnp2 27027 jensen 27050 eupthvdres 30267 sspg 30760 ssps 30762 sspn 30768 hhsssh 31301 fnresin 32645 padct 32733 ffsrn 32743 resf1o 32744 gsumle 33074 symgcom 33076 cycpmconjvlem 33134 cycpmconjslem1 33147 nsgqusf1o 33409 ply1degltdimlem 33635 cnrrext 33956 indf1ofs 33990 eulerpartlemt 34336 subfacp1lem3 35150 subfacp1lem5 35152 cvmliftlem11 35263 poimirlem9 37589 mapfzcons1 42673 eq0rabdioph 42732 eldioph4b 42767 diophren 42769 pwssplit4 43046 tfsconcatrev 43310 dvresntr 45839 sge0split 46330 |
Copyright terms: Public domain | W3C validator |