| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnresdm | Structured version Visualization version GIF version | ||
| Description: A function does not change when restricted to its domain. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnresdm | ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6623 | . 2 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | fndm 6624 | . . 3 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | eqimss 4008 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 ⊆ 𝐴) |
| 5 | relssres 5996 | . 2 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-res 5653 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnima 6651 fresin 6732 resasplit 6733 fresaunres2 6735 fvreseq1 7014 fnsnr 7140 fninfp 7151 fnsnsplit 7161 fsnunfv 7164 fsnunres 7165 fnsuppeq0 8174 mapunen 9116 dif1enlem 9126 dif1enlemOLD 9127 fnfi 9148 canthp1lem2 10613 fseq1p1m1 13566 facnn 14247 fac0 14248 hashgval 14305 hashinf 14307 rlimres 15531 lo1res 15532 rlimresb 15538 isercolllem2 15639 isercoll 15641 ruclem4 16209 fsets 17146 sscres 17792 sscid 17793 gsumzres 19846 pwssplit1 20973 zzngim 21469 ptuncnv 23701 ptcmpfi 23707 tsmsres 24038 imasdsf1olem 24268 tmslem 24377 tmsxms 24381 imasf1oxms 24384 prdsxms 24425 tmsxps 24431 tmsxpsmopn 24432 isngp2 24492 tngngp2 24547 cnfldms 24670 cncms 25262 cnfldcusp 25264 mbfres2 25553 dvres 25819 dvres3a 25822 cpnres 25846 dvmptres3 25867 dvlip2 25907 dvgt0lem2 25915 dvne0 25923 rlimcnp2 26883 jensen 26906 eupthvdres 30171 sspg 30664 ssps 30666 sspn 30672 hhsssh 31205 fnresin 32557 padct 32650 ffsrn 32659 resf1o 32660 indf1ofs 32796 gsumle 33045 symgcom 33047 cycpmconjvlem 33105 cycpmconjslem1 33118 nsgqusf1o 33394 ply1degltdimlem 33625 cnrrext 34007 eulerpartlemt 34369 subfacp1lem3 35176 subfacp1lem5 35178 cvmliftlem11 35289 poimirlem9 37630 dvun 42354 mapfzcons1 42712 eq0rabdioph 42771 eldioph4b 42806 diophren 42808 pwssplit4 43085 tfsconcatrev 43344 dvresntr 45923 sge0split 46414 imaidfu2 49104 |
| Copyright terms: Public domain | W3C validator |