MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubfun Structured version   Visualization version   GIF version

Theorem lubfun 18256
Description: The LUB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
lubfun.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubfun Fun 𝑈

Proof of Theorem lubfun
Dummy variables 𝑥 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6520 . . . 4 Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
2 funres 6524 . . . 4 (Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))})
4 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
6 lubfun.u . . . . 5 𝑈 = (lub‘𝐾)
7 biid 261 . . . . 5 ((∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
8 id 22 . . . . 5 (𝐾 ∈ V → 𝐾 ∈ V)
94, 5, 6, 7, 8lubfval 18254 . . . 4 (𝐾 ∈ V → 𝑈 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))}))
109funeqd 6504 . . 3 (𝐾 ∈ V → (Fun 𝑈 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))})))
113, 10mpbiri 258 . 2 (𝐾 ∈ V → Fun 𝑈)
12 fun0 6547 . . 3 Fun ∅
13 fvprc 6814 . . . . 5 𝐾 ∈ V → (lub‘𝐾) = ∅)
146, 13eqtrid 2776 . . . 4 𝐾 ∈ V → 𝑈 = ∅)
1514funeqd 6504 . . 3 𝐾 ∈ V → (Fun 𝑈 ↔ Fun ∅))
1612, 15mpbiri 258 . 2 𝐾 ∈ V → Fun 𝑈)
1711, 16pm2.61i 182 1 Fun 𝑈
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  ∃!wreu 3341  Vcvv 3436  c0 4284  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  cres 5621  Fun wfun 6476  cfv 6482  crio 7305  Basecbs 17120  lecple 17168  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-lub 18250
This theorem is referenced by:  joinfval  18277  joinfval2  18278
  Copyright terms: Public domain W3C validator