MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubfun Structured version   Visualization version   GIF version

Theorem lubfun 18301
Description: The LUB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
lubfun.u π‘ˆ = (lubβ€˜πΎ)
Assertion
Ref Expression
lubfun Fun π‘ˆ

Proof of Theorem lubfun
Dummy variables π‘₯ 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6583 . . . 4 Fun (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))))
2 funres 6587 . . . 4 (Fun (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))) β†’ Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))})
4 eqid 2732 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 eqid 2732 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
6 lubfun.u . . . . 5 π‘ˆ = (lubβ€˜πΎ)
7 biid 260 . . . . 5 ((βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
8 id 22 . . . . 5 (𝐾 ∈ V β†’ 𝐾 ∈ V)
94, 5, 6, 7, 8lubfval 18299 . . . 4 (𝐾 ∈ V β†’ π‘ˆ = ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))}))
109funeqd 6567 . . 3 (𝐾 ∈ V β†’ (Fun π‘ˆ ↔ Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧))})))
113, 10mpbiri 257 . 2 (𝐾 ∈ V β†’ Fun π‘ˆ)
12 fun0 6610 . . 3 Fun βˆ…
13 fvprc 6880 . . . . 5 (Β¬ 𝐾 ∈ V β†’ (lubβ€˜πΎ) = βˆ…)
146, 13eqtrid 2784 . . . 4 (Β¬ 𝐾 ∈ V β†’ π‘ˆ = βˆ…)
1514funeqd 6567 . . 3 (Β¬ 𝐾 ∈ V β†’ (Fun π‘ˆ ↔ Fun βˆ…))
1612, 15mpbiri 257 . 2 (Β¬ 𝐾 ∈ V β†’ Fun π‘ˆ)
1711, 16pm2.61i 182 1 Fun π‘ˆ
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒ!wreu 3374  Vcvv 3474  βˆ…c0 4321  π’« cpw 4601   class class class wbr 5147   ↦ cmpt 5230   β†Ύ cres 5677  Fun wfun 6534  β€˜cfv 6540  β„©crio 7360  Basecbs 17140  lecple 17200  lubclub 18258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-lub 18295
This theorem is referenced by:  joinfval  18322  joinfval2  18323
  Copyright terms: Public domain W3C validator