MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0fsupp Structured version   Visualization version   GIF version

Theorem 0fsupp 9317
Description: The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
0fsupp (𝑍𝑉 → ∅ finSupp 𝑍)

Proof of Theorem 0fsupp
StepHypRef Expression
1 supp0 8121 . . 3 (𝑍𝑉 → (∅ supp 𝑍) = ∅)
2 0fi 8990 . . 3 ∅ ∈ Fin
31, 2eqeltrdi 2836 . 2 (𝑍𝑉 → (∅ supp 𝑍) ∈ Fin)
4 fun0 6565 . . 3 Fun ∅
5 0ex 5257 . . 3 ∅ ∈ V
6 funisfsupp 9294 . . 3 ((Fun ∅ ∧ ∅ ∈ V ∧ 𝑍𝑉) → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin))
74, 5, 6mp3an12 1453 . 2 (𝑍𝑉 → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin))
83, 7mpbird 257 1 (𝑍𝑉 → ∅ finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3444  c0 4292   class class class wbr 5102  Fun wfun 6493  (class class class)co 7369   supp csupp 8116  Fincfn 8895   finSupp cfsupp 9288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-supp 8117  df-en 8896  df-fin 8899  df-fsupp 9289
This theorem is referenced by:  lco0  48389
  Copyright terms: Public domain W3C validator