MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0fsupp Structured version   Visualization version   GIF version

Theorem 0fsupp 9359
Description: The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
0fsupp (𝑍𝑉 → ∅ finSupp 𝑍)

Proof of Theorem 0fsupp
StepHypRef Expression
1 supp0 8153 . . 3 (𝑍𝑉 → (∅ supp 𝑍) = ∅)
2 0fi 9019 . . 3 ∅ ∈ Fin
31, 2eqeltrdi 2837 . 2 (𝑍𝑉 → (∅ supp 𝑍) ∈ Fin)
4 fun0 6589 . . 3 Fun ∅
5 0ex 5270 . . 3 ∅ ∈ V
6 funisfsupp 9336 . . 3 ((Fun ∅ ∧ ∅ ∈ V ∧ 𝑍𝑉) → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin))
74, 5, 6mp3an12 1453 . 2 (𝑍𝑉 → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin))
83, 7mpbird 257 1 (𝑍𝑉 → ∅ finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3455  c0 4304   class class class wbr 5115  Fun wfun 6513  (class class class)co 7394   supp csupp 8148  Fincfn 8922   finSupp cfsupp 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-ord 6343  df-on 6344  df-lim 6345  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-supp 8149  df-en 8923  df-fin 8926  df-fsupp 9331
This theorem is referenced by:  lco0  48345
  Copyright terms: Public domain W3C validator