![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0fsupp | Structured version Visualization version GIF version |
Description: The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
0fsupp | ⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supp0 7563 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (∅ supp 𝑍) = ∅) | |
2 | 0fin 8456 | . . 3 ⊢ ∅ ∈ Fin | |
3 | 1, 2 | syl6eqel 2913 | . 2 ⊢ (𝑍 ∈ 𝑉 → (∅ supp 𝑍) ∈ Fin) |
4 | fun0 6186 | . . 3 ⊢ Fun ∅ | |
5 | 0ex 5013 | . . 3 ⊢ ∅ ∈ V | |
6 | funisfsupp 8548 | . . 3 ⊢ ((Fun ∅ ∧ ∅ ∈ V ∧ 𝑍 ∈ 𝑉) → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin)) | |
7 | 4, 5, 6 | mp3an12 1581 | . 2 ⊢ (𝑍 ∈ 𝑉 → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin)) |
8 | 3, 7 | mpbird 249 | 1 ⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2166 Vcvv 3413 ∅c0 4143 class class class wbr 4872 Fun wfun 6116 (class class class)co 6904 supp csupp 7558 Fincfn 8221 finSupp cfsupp 8543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-supp 7559 df-en 8222 df-fin 8225 df-fsupp 8544 |
This theorem is referenced by: lco0 43062 |
Copyright terms: Public domain | W3C validator |