| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0fsupp | Structured version Visualization version GIF version | ||
| Description: The empty set is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| 0fsupp | ⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supp0 8090 | . . 3 ⊢ (𝑍 ∈ 𝑉 → (∅ supp 𝑍) = ∅) | |
| 2 | 0fi 8959 | . . 3 ⊢ ∅ ∈ Fin | |
| 3 | 1, 2 | eqeltrdi 2839 | . 2 ⊢ (𝑍 ∈ 𝑉 → (∅ supp 𝑍) ∈ Fin) |
| 4 | fun0 6541 | . . 3 ⊢ Fun ∅ | |
| 5 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 6 | funisfsupp 9246 | . . 3 ⊢ ((Fun ∅ ∧ ∅ ∈ V ∧ 𝑍 ∈ 𝑉) → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin)) | |
| 7 | 4, 5, 6 | mp3an12 1453 | . 2 ⊢ (𝑍 ∈ 𝑉 → (∅ finSupp 𝑍 ↔ (∅ supp 𝑍) ∈ Fin)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ (𝑍 ∈ 𝑉 → ∅ finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 class class class wbr 5086 Fun wfun 6470 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-supp 8086 df-en 8865 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: lco0 48459 |
| Copyright terms: Public domain | W3C validator |