Step | Hyp | Ref
| Expression |
1 | | funmpt 6472 |
. . . 4
⊢ Fun
(𝑠 ∈ 𝒫
(Base‘𝐾) ↦
(℩𝑥 ∈
(Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) |
2 | | funres 6476 |
. . . 4
⊢ (Fun
(𝑠 ∈ 𝒫
(Base‘𝐾) ↦
(℩𝑥 ∈
(Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))})) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ Fun
((𝑠 ∈ 𝒫
(Base‘𝐾) ↦
(℩𝑥 ∈
(Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))}) |
4 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
5 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
6 | | glbfun.g |
. . . . 5
⊢ 𝐺 = (glb‘𝐾) |
7 | | biid 260 |
. . . . 5
⊢
((∀𝑦 ∈
𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))) |
8 | | id 22 |
. . . . 5
⊢ (𝐾 ∈ V → 𝐾 ∈ V) |
9 | 4, 5, 6, 7, 8 | glbfval 18081 |
. . . 4
⊢ (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))})) |
10 | 9 | funeqd 6456 |
. . 3
⊢ (𝐾 ∈ V → (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (℩𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑠 𝑧(le‘𝐾)𝑦 → 𝑧(le‘𝐾)𝑥))}))) |
11 | 3, 10 | mpbiri 257 |
. 2
⊢ (𝐾 ∈ V → Fun 𝐺) |
12 | | fun0 6499 |
. . 3
⊢ Fun
∅ |
13 | | fvprc 6766 |
. . . . 5
⊢ (¬
𝐾 ∈ V →
(glb‘𝐾) =
∅) |
14 | 6, 13 | eqtrid 2790 |
. . . 4
⊢ (¬
𝐾 ∈ V → 𝐺 = ∅) |
15 | 14 | funeqd 6456 |
. . 3
⊢ (¬
𝐾 ∈ V → (Fun
𝐺 ↔ Fun
∅)) |
16 | 12, 15 | mpbiri 257 |
. 2
⊢ (¬
𝐾 ∈ V → Fun 𝐺) |
17 | 11, 16 | pm2.61i 182 |
1
⊢ Fun 𝐺 |