MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfun Structured version   Visualization version   GIF version

Theorem glbfun 17606
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
glbfun.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
glbfun Fun 𝐺

Proof of Theorem glbfun
Dummy variables 𝑥 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6396 . . . 4 Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2 funres 6400 . . . 4 (Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
4 eqid 2824 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2824 . . . . 5 (le‘𝐾) = (le‘𝐾)
6 glbfun.g . . . . 5 𝐺 = (glb‘𝐾)
7 biid 263 . . . . 5 ((∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
8 id 22 . . . . 5 (𝐾 ∈ V → 𝐾 ∈ V)
94, 5, 6, 7, 8glbfval 17604 . . . 4 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
109funeqd 6380 . . 3 (𝐾 ∈ V → (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})))
113, 10mpbiri 260 . 2 (𝐾 ∈ V → Fun 𝐺)
12 fun0 6422 . . 3 Fun ∅
13 fvprc 6666 . . . . 5 𝐾 ∈ V → (glb‘𝐾) = ∅)
146, 13syl5eq 2871 . . . 4 𝐾 ∈ V → 𝐺 = ∅)
1514funeqd 6380 . . 3 𝐾 ∈ V → (Fun 𝐺 ↔ Fun ∅))
1612, 15mpbiri 260 . 2 𝐾 ∈ V → Fun 𝐺)
1711, 16pm2.61i 184 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  {cab 2802  wral 3141  ∃!wreu 3143  Vcvv 3497  c0 4294  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  cres 5560  Fun wfun 6352  cfv 6358  crio 7116  Basecbs 16486  lecple 16575  glbcglb 17556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-glb 17588
This theorem is referenced by:  meetfval  17628  meetfval2  17629
  Copyright terms: Public domain W3C validator