MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfun Structured version   Visualization version   GIF version

Theorem glbfun 18318
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
glbfun.g 𝐺 = (glbβ€˜πΎ)
Assertion
Ref Expression
glbfun Fun 𝐺

Proof of Theorem glbfun
Dummy variables π‘₯ 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6587 . . . 4 Fun (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))))
2 funres 6591 . . . 4 (Fun (𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))) β†’ Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))})
4 eqid 2733 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
5 eqid 2733 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
6 glbfun.g . . . . 5 𝐺 = (glbβ€˜πΎ)
7 biid 261 . . . . 5 ((βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)) ↔ (βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))
8 id 22 . . . . 5 (𝐾 ∈ V β†’ 𝐾 ∈ V)
94, 5, 6, 7, 8glbfval 18316 . . . 4 (𝐾 ∈ V β†’ 𝐺 = ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))}))
109funeqd 6571 . . 3 (𝐾 ∈ V β†’ (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Baseβ€˜πΎ) ↦ (β„©π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯)))) β†Ύ {𝑠 ∣ βˆƒ!π‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 π‘₯(leβ€˜πΎ)𝑦 ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑠 𝑧(leβ€˜πΎ)𝑦 β†’ 𝑧(leβ€˜πΎ)π‘₯))})))
113, 10mpbiri 258 . 2 (𝐾 ∈ V β†’ Fun 𝐺)
12 fun0 6614 . . 3 Fun βˆ…
13 fvprc 6884 . . . . 5 (Β¬ 𝐾 ∈ V β†’ (glbβ€˜πΎ) = βˆ…)
146, 13eqtrid 2785 . . . 4 (Β¬ 𝐾 ∈ V β†’ 𝐺 = βˆ…)
1514funeqd 6571 . . 3 (Β¬ 𝐾 ∈ V β†’ (Fun 𝐺 ↔ Fun βˆ…))
1612, 15mpbiri 258 . 2 (Β¬ 𝐾 ∈ V β†’ Fun 𝐺)
1711, 16pm2.61i 182 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  βˆƒ!wreu 3375  Vcvv 3475  βˆ…c0 4323  π’« cpw 4603   class class class wbr 5149   ↦ cmpt 5232   β†Ύ cres 5679  Fun wfun 6538  β€˜cfv 6544  β„©crio 7364  Basecbs 17144  lecple 17204  glbcglb 18263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-glb 18300
This theorem is referenced by:  meetfval  18340  meetfval2  18341
  Copyright terms: Public domain W3C validator