MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfun Structured version   Visualization version   GIF version

Theorem glbfun 18185
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
glbfun.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
glbfun Fun 𝐺

Proof of Theorem glbfun
Dummy variables 𝑥 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6531 . . . 4 Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2 funres 6535 . . . 4 (Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
4 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2737 . . . . 5 (le‘𝐾) = (le‘𝐾)
6 glbfun.g . . . . 5 𝐺 = (glb‘𝐾)
7 biid 261 . . . . 5 ((∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
8 id 22 . . . . 5 (𝐾 ∈ V → 𝐾 ∈ V)
94, 5, 6, 7, 8glbfval 18183 . . . 4 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
109funeqd 6515 . . 3 (𝐾 ∈ V → (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})))
113, 10mpbiri 258 . 2 (𝐾 ∈ V → Fun 𝐺)
12 fun0 6558 . . 3 Fun ∅
13 fvprc 6826 . . . . 5 𝐾 ∈ V → (glb‘𝐾) = ∅)
146, 13eqtrid 2789 . . . 4 𝐾 ∈ V → 𝐺 = ∅)
1514funeqd 6515 . . 3 𝐾 ∈ V → (Fun 𝐺 ↔ Fun ∅))
1612, 15mpbiri 258 . 2 𝐾 ∈ V → Fun 𝐺)
1711, 16pm2.61i 182 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1541  wcel 2106  {cab 2714  wral 3062  ∃!wreu 3349  Vcvv 3443  c0 4277  𝒫 cpw 4555   class class class wbr 5100  cmpt 5183  cres 5629  Fun wfun 6482  cfv 6488  crio 7301  Basecbs 17014  lecple 17071  glbcglb 18130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-glb 18167
This theorem is referenced by:  meetfval  18207  meetfval2  18208
  Copyright terms: Public domain W3C validator