MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfun Structured version   Visualization version   GIF version

Theorem glbfun 18083
Description: The GLB is a function. (Contributed by NM, 9-Sep-2018.)
Hypothesis
Ref Expression
glbfun.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
glbfun Fun 𝐺

Proof of Theorem glbfun
Dummy variables 𝑥 𝑠 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funmpt 6472 . . . 4 Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
2 funres 6476 . . . 4 (Fun (𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) → Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
31, 2ax-mp 5 . . 3 Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})
4 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
6 glbfun.g . . . . 5 𝐺 = (glb‘𝐾)
7 biid 260 . . . . 5 ((∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
8 id 22 . . . . 5 (𝐾 ∈ V → 𝐾 ∈ V)
94, 5, 6, 7, 8glbfval 18081 . . . 4 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))}))
109funeqd 6456 . . 3 (𝐾 ∈ V → (Fun 𝐺 ↔ Fun ((𝑠 ∈ 𝒫 (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑠 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))})))
113, 10mpbiri 257 . 2 (𝐾 ∈ V → Fun 𝐺)
12 fun0 6499 . . 3 Fun ∅
13 fvprc 6766 . . . . 5 𝐾 ∈ V → (glb‘𝐾) = ∅)
146, 13eqtrid 2790 . . . 4 𝐾 ∈ V → 𝐺 = ∅)
1514funeqd 6456 . . 3 𝐾 ∈ V → (Fun 𝐺 ↔ Fun ∅))
1612, 15mpbiri 257 . 2 𝐾 ∈ V → Fun 𝐺)
1711, 16pm2.61i 182 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  ∃!wreu 3066  Vcvv 3432  c0 4256  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cres 5591  Fun wfun 6427  cfv 6433  crio 7231  Basecbs 16912  lecple 16969  glbcglb 18028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-glb 18065
This theorem is referenced by:  meetfval  18105  meetfval2  18106
  Copyright terms: Public domain W3C validator