| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funsn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funsn.1 | ⊢ 𝐴 ∈ V |
| funsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funsn | ⊢ Fun {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | funsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | funsng 6592 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ Fun {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: funtp 6598 fun0 6606 funop 7144 funsndifnop 7146 wfrlem13OLD 8340 dcomex 10466 axdc3lem4 10472 cnfldfunALT 21335 cnfldfunALTOLD 21348 bnj1421 35078 funop1 47279 |
| Copyright terms: Public domain | W3C validator |