MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsn Structured version   Visualization version   GIF version

Theorem funsn 6592
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
funsn.1 𝐴 ∈ V
funsn.2 𝐵 ∈ V
Assertion
Ref Expression
funsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funsn
StepHypRef Expression
1 funsn.1 . 2 𝐴 ∈ V
2 funsn.2 . 2 𝐵 ∈ V
3 funsng 6590 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 689 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3466  {csn 4621  cop 4627  Fun wfun 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-fun 6536
This theorem is referenced by:  funtp  6596  fun0  6604  funop  7140  funsndifnop  7142  wfrlem13OLD  8317  dcomex  10439  axdc3lem4  10445  cnfldfunALT  21249  cnfldfunALTOLD  21262  cnfldfunALTOLDOLD  21263  bnj1421  34571  funop1  46536
  Copyright terms: Public domain W3C validator