Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funsn | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
funsn.1 | ⊢ 𝐴 ∈ V |
funsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funsn | ⊢ Fun {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | funsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | funsng 6431 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ Fun {〈𝐴, 𝐵〉} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3408 {csn 4541 〈cop 4547 Fun wfun 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-fun 6382 |
This theorem is referenced by: funtp 6437 fun0 6445 funop 6964 funsndifnop 6966 wfrlem13 8067 dcomex 10061 axdc3lem4 10067 cnfldfun 20375 bnj1421 32735 funop1 44447 |
Copyright terms: Public domain | W3C validator |