| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funsn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| funsn.1 | ⊢ 𝐴 ∈ V |
| funsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| funsn | ⊢ Fun {〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | funsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | funsng 6551 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {〈𝐴, 𝐵〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ Fun {〈𝐴, 𝐵〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-fun 6501 |
| This theorem is referenced by: funtp 6557 fun0 6565 funop 7103 funsndifnop 7105 dcomex 10376 axdc3lem4 10382 cnfldfunALT 21255 cnfldfunALTOLD 21268 bnj1421 35005 funop1 47257 |
| Copyright terms: Public domain | W3C validator |