MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsn Structured version   Visualization version   GIF version

Theorem funsn 6269
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
funsn.1 𝐴 ∈ V
funsn.2 𝐵 ∈ V
Assertion
Ref Expression
funsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funsn
StepHypRef Expression
1 funsn.1 . 2 𝐴 ∈ V
2 funsn.2 . 2 𝐵 ∈ V
3 funsng 6267 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {⟨𝐴, 𝐵⟩})
41, 2, 3mp2an 688 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff setvar class
Syntax hints:  wcel 2079  Vcvv 3432  {csn 4466  cop 4472  Fun wfun 6211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-fun 6219
This theorem is referenced by:  funtp  6273  fun0  6281  funop  6765  funsndifnop  6767  fvsnOLD  6798  wfrlem13  7810  dcomex  9704  axdc3lem4  9710  cnfldfun  20227  bnj1421  31884  funop1  42952
  Copyright terms: Public domain W3C validator