MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Structured version   Visualization version   GIF version

Theorem funcnv 6423
Description: The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 6422 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv
StepHypRef Expression
1 vex 3497 . . . . . . 7 𝑥 ∈ V
2 vex 3497 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5812 . . . . . 6 (𝑥𝐴𝑦𝑦 ∈ ran 𝐴)
43pm4.71ri 563 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
54mobii 2631 . . . 4 (∃*𝑥 𝑥𝐴𝑦 ↔ ∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
6 moanimv 2704 . . . 4 (∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦) ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
75, 6bitri 277 . . 3 (∃*𝑥 𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
87albii 1820 . 2 (∀𝑦∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
9 funcnv2 6422 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
10 df-ral 3143 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
118, 9, 103bitr4i 305 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535  wcel 2114  ∃*wmo 2620  wral 3138   class class class wbr 5066  ccnv 5554  ran crn 5556  Fun wfun 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-fun 6357
This theorem is referenced by:  funcnv3  6424  fncnv  6427
  Copyright terms: Public domain W3C validator