MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Structured version   Visualization version   GIF version

Theorem funcnv 6558
Description: The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 6557 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv
StepHypRef Expression
1 vex 3442 . . . . . . 7 𝑥 ∈ V
2 vex 3442 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5889 . . . . . 6 (𝑥𝐴𝑦𝑦 ∈ ran 𝐴)
43pm4.71ri 560 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
54mobii 2545 . . . 4 (∃*𝑥 𝑥𝐴𝑦 ↔ ∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
6 moanimv 2616 . . . 4 (∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦) ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
75, 6bitri 275 . . 3 (∃*𝑥 𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
87albii 1820 . 2 (∀𝑦∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
9 funcnv2 6557 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
10 df-ral 3050 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
118, 9, 103bitr4i 303 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2113  ∃*wmo 2535  wral 3049   class class class wbr 5095  ccnv 5620  ran crn 5622  Fun wfun 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491
This theorem is referenced by:  funcnv3  6559  fncnv  6562
  Copyright terms: Public domain W3C validator