MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnv Structured version   Visualization version   GIF version

Theorem funcnv 6411
Description: The converse of a class is a function iff the class is single-rooted, which means that for any 𝑦 in the range of 𝐴 there is at most one 𝑥 such that 𝑥𝐴𝑦. Definition of single-rooted in [Enderton] p. 43. See funcnv2 6410 for a simpler version. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
funcnv (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem funcnv
StepHypRef Expression
1 vex 3483 . . . . . . 7 𝑥 ∈ V
2 vex 3483 . . . . . . 7 𝑦 ∈ V
31, 2brelrn 5799 . . . . . 6 (𝑥𝐴𝑦𝑦 ∈ ran 𝐴)
43pm4.71ri 564 . . . . 5 (𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
54mobii 2632 . . . 4 (∃*𝑥 𝑥𝐴𝑦 ↔ ∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦))
6 moanimv 2707 . . . 4 (∃*𝑥(𝑦 ∈ ran 𝐴𝑥𝐴𝑦) ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
75, 6bitri 278 . . 3 (∃*𝑥 𝑥𝐴𝑦 ↔ (𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
87albii 1821 . 2 (∀𝑦∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
9 funcnv2 6410 . 2 (Fun 𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦)
10 df-ral 3138 . 2 (∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦 ↔ ∀𝑦(𝑦 ∈ ran 𝐴 → ∃*𝑥 𝑥𝐴𝑦))
118, 9, 103bitr4i 306 1 (Fun 𝐴 ↔ ∀𝑦 ∈ ran 𝐴∃*𝑥 𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wcel 2115  ∃*wmo 2622  wral 3133   class class class wbr 5052  ccnv 5541  ran crn 5543  Fun wfun 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-sn 4550  df-pr 4552  df-op 4556  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-fun 6345
This theorem is referenced by:  funcnv3  6412  fncnv  6415
  Copyright terms: Public domain W3C validator