MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv12 Structured version   Visualization version   GIF version

Theorem csbfv12 6760
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbfv12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbiota 6373 . . . 4 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦)
2 sbcbr123 5107 . . . . . 6 ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
3 csbconstg 3830 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥𝑦 = 𝑦)
43breq2d 5065 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
52, 4syl5bb 286 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
65iotabidv 6364 . . . 4 (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
71, 6eqtrid 2789 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
8 df-fv 6388 . . . 4 (𝐹𝐵) = (℩𝑦𝐵𝐹𝑦)
98csbeq2i 3819 . . 3 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦)
10 df-fv 6388 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦)
117, 9, 103eqtr4g 2803 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
12 csbprc 4321 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
13 csbprc 4321 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
1413fveq1d 6719 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (∅‘𝐴 / 𝑥𝐵))
15 0fv 6756 . . . 4 (∅‘𝐴 / 𝑥𝐵) = ∅
1614, 15eqtr2di 2795 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1712, 16eqtrd 2777 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1811, 17pm2.61i 185 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2110  Vcvv 3408  [wsbc 3694  csb 3811  c0 4237   class class class wbr 5053  cio 6336  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-dm 5561  df-iota 6338  df-fv 6388
This theorem is referenced by:  csbfv2g  6761  coe1fzgsumdlem  21222  evl1gsumdlem  21272  csbwrecsg  35235  csbrdgg  35237  rdgeqoa  35278  csbfinxpg  35296  cdlemk42  38692  iccelpart  44558
  Copyright terms: Public domain W3C validator