![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbfv12 | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbfv12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiota 6566 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) | |
2 | sbcbr123 5220 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦) | |
3 | csbconstg 3940 | . . . . . . 7 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 3 | breq2d 5178 | . . . . . 6 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 2, 4 | bitrid 283 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | iotabidv 6557 | . . . 4 ⊢ (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
7 | 1, 6 | eqtrid 2792 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
8 | df-fv 6581 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑦𝐵𝐹𝑦) | |
9 | 8 | csbeq2i 3929 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) |
10 | df-fv 6581 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦) | |
11 | 7, 9, 10 | 3eqtr4g 2805 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
12 | csbprc 4432 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ∅) | |
13 | csbprc 4432 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
14 | 13 | fveq1d 6922 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (∅‘⦋𝐴 / 𝑥⦌𝐵)) |
15 | 0fv 6964 | . . . 4 ⊢ (∅‘⦋𝐴 / 𝑥⦌𝐵) = ∅ | |
16 | 14, 15 | eqtr2di 2797 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
17 | 12, 16 | eqtrd 2780 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
18 | 11, 17 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 ⦋csb 3921 ∅c0 4352 class class class wbr 5166 ℩cio 6523 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 |
This theorem is referenced by: csbfv2g 6969 coe1fzgsumdlem 22328 evl1gsumdlem 22381 csbrdgg 37295 rdgeqoa 37336 csbfinxpg 37354 cdlemk42 40898 evl1gprodd 42074 iccelpart 47307 |
Copyright terms: Public domain | W3C validator |