| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbfv12 | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbfv12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiota 6482 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) | |
| 2 | sbcbr123 5149 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦) | |
| 3 | csbconstg 3866 | . . . . . . 7 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
| 4 | 3 | breq2d 5107 | . . . . . 6 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
| 5 | 2, 4 | bitrid 283 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
| 6 | 5 | iotabidv 6473 | . . . 4 ⊢ (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
| 7 | 1, 6 | eqtrid 2780 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
| 8 | df-fv 6497 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑦𝐵𝐹𝑦) | |
| 9 | 8 | csbeq2i 3855 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) |
| 10 | df-fv 6497 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦) | |
| 11 | 7, 9, 10 | 3eqtr4g 2793 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 12 | csbprc 4360 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ∅) | |
| 13 | csbprc 4360 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
| 14 | 13 | fveq1d 6833 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (∅‘⦋𝐴 / 𝑥⦌𝐵)) |
| 15 | 0fv 6872 | . . . 4 ⊢ (∅‘⦋𝐴 / 𝑥⦌𝐵) = ∅ | |
| 16 | 14, 15 | eqtr2di 2785 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 17 | 12, 16 | eqtrd 2768 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
| 18 | 11, 17 | pm2.61i 182 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3438 [wsbc 3738 ⦋csb 3847 ∅c0 4284 class class class wbr 5095 ℩cio 6443 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: csbfv2g 6877 coe1fzgsumdlem 22228 evl1gsumdlem 22281 csbrdgg 37384 rdgeqoa 37425 csbfinxpg 37443 cdlemk42 41050 evl1gprodd 42220 iccelpart 47547 |
| Copyright terms: Public domain | W3C validator |