MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbfv12 Structured version   Visualization version   GIF version

Theorem csbfv12 6811
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.)
Assertion
Ref Expression
csbfv12 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)

Proof of Theorem csbfv12
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbiota 6423 . . . 4 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦)
2 sbcbr123 5132 . . . . . 6 ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
3 csbconstg 3855 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥𝑦 = 𝑦)
43breq2d 5090 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
52, 4syl5bb 282 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
65iotabidv 6414 . . . 4 (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
71, 6eqtrid 2791 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦))
8 df-fv 6438 . . . 4 (𝐹𝐵) = (℩𝑦𝐵𝐹𝑦)
98csbeq2i 3844 . . 3 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥(℩𝑦𝐵𝐹𝑦)
10 df-fv 6438 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (℩𝑦𝐴 / 𝑥𝐵𝐴 / 𝑥𝐹𝑦)
117, 9, 103eqtr4g 2804 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
12 csbprc 4345 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = ∅)
13 csbprc 4345 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐹 = ∅)
1413fveq1d 6770 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = (∅‘𝐴 / 𝑥𝐵))
15 0fv 6807 . . . 4 (∅‘𝐴 / 𝑥𝐵) = ∅
1614, 15eqtr2di 2796 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1712, 16eqtrd 2779 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
1811, 17pm2.61i 182 1 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2109  Vcvv 3430  [wsbc 3719  csb 3836  c0 4261   class class class wbr 5078  cio 6386  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-dm 5598  df-iota 6388  df-fv 6438
This theorem is referenced by:  csbfv2g  6812  coe1fzgsumdlem  21453  evl1gsumdlem  21503  csbrdgg  35479  rdgeqoa  35520  csbfinxpg  35538  cdlemk42  38934  iccelpart  44837
  Copyright terms: Public domain W3C validator