Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbfv12 | Structured version Visualization version GIF version |
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.) |
Ref | Expression |
---|---|
csbfv12 | ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiota 6373 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) | |
2 | sbcbr123 5107 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦) | |
3 | csbconstg 3830 | . . . . . . 7 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 3 | breq2d 5065 | . . . . . 6 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 2, 4 | syl5bb 286 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | iotabidv 6364 | . . . 4 ⊢ (𝐴 ∈ V → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
7 | 1, 6 | eqtrid 2789 | . . 3 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
8 | df-fv 6388 | . . . 4 ⊢ (𝐹‘𝐵) = (℩𝑦𝐵𝐹𝑦) | |
9 | 8 | csbeq2i 3819 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) |
10 | df-fv 6388 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦) | |
11 | 7, 9, 10 | 3eqtr4g 2803 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
12 | csbprc 4321 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ∅) | |
13 | csbprc 4321 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐹 = ∅) | |
14 | 13 | fveq1d 6719 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (∅‘⦋𝐴 / 𝑥⦌𝐵)) |
15 | 0fv 6756 | . . . 4 ⊢ (∅‘⦋𝐴 / 𝑥⦌𝐵) = ∅ | |
16 | 14, 15 | eqtr2di 2795 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∅ = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
17 | 12, 16 | eqtrd 2777 | . 2 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
18 | 11, 17 | pm2.61i 185 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2110 Vcvv 3408 [wsbc 3694 ⦋csb 3811 ∅c0 4237 class class class wbr 5053 ℩cio 6336 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-dm 5561 df-iota 6338 df-fv 6388 |
This theorem is referenced by: csbfv2g 6761 coe1fzgsumdlem 21222 evl1gsumdlem 21272 csbwrecsg 35235 csbrdgg 35237 rdgeqoa 35278 csbfinxpg 35296 cdlemk42 38692 iccelpart 44558 |
Copyright terms: Public domain | W3C validator |