MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfvres Structured version   Visualization version   GIF version

Theorem nfvres 6932
Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
StepHypRef Expression
1 dmres 6003 . . . 4 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
2 inss1 4228 . . . 4 (𝐵 ∩ dom 𝐹) ⊆ 𝐵
31, 2eqsstri 4016 . . 3 dom (𝐹𝐵) ⊆ 𝐵
43sseli 3978 . 2 (𝐴 ∈ dom (𝐹𝐵) → 𝐴𝐵)
5 ndmfv 6926 . 2 𝐴 ∈ dom (𝐹𝐵) → ((𝐹𝐵)‘𝐴) = ∅)
64, 5nsyl5 159 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2106  cin 3947  c0 4322  dom cdm 5676  cres 5678  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-dm 5686  df-res 5688  df-iota 6495  df-fv 6551
This theorem is referenced by:  fveqres  6938  fvresval  7357  funpartfv  35209  setrec2lem1  47826
  Copyright terms: Public domain W3C validator