Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvres | Structured version Visualization version GIF version |
Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres | ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5911 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
2 | inss1 4168 | . . . 4 ⊢ (𝐵 ∩ dom 𝐹) ⊆ 𝐵 | |
3 | 1, 2 | eqsstri 3960 | . . 3 ⊢ dom (𝐹 ↾ 𝐵) ⊆ 𝐵 |
4 | 3 | sseli 3922 | . 2 ⊢ (𝐴 ∈ dom (𝐹 ↾ 𝐵) → 𝐴 ∈ 𝐵) |
5 | ndmfv 6799 | . 2 ⊢ (¬ 𝐴 ∈ dom (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
6 | 4, 5 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2110 ∩ cin 3891 ∅c0 4262 dom cdm 5589 ↾ cres 5591 ‘cfv 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-xp 5595 df-dm 5599 df-res 5601 df-iota 6389 df-fv 6439 |
This theorem is referenced by: fveqres 6811 trpredlem1 9472 fvresval 33735 funpartfv 34241 setrec2lem1 46366 |
Copyright terms: Public domain | W3C validator |