MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfvres Structured version   Visualization version   GIF version

Theorem nfvres 6861
Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
StepHypRef Expression
1 dmres 5963 . . . 4 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
2 inss1 4188 . . . 4 (𝐵 ∩ dom 𝐹) ⊆ 𝐵
31, 2eqsstri 3982 . . 3 dom (𝐹𝐵) ⊆ 𝐵
43sseli 3931 . 2 (𝐴 ∈ dom (𝐹𝐵) → 𝐴𝐵)
5 ndmfv 6855 . 2 𝐴 ∈ dom (𝐹𝐵) → ((𝐹𝐵)‘𝐴) = ∅)
64, 5nsyl5 159 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cin 3902  c0 4284  dom cdm 5619  cres 5621  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-dm 5629  df-res 5631  df-iota 6438  df-fv 6490
This theorem is referenced by:  fveqres  6867  fvresval  7295  funpartfv  35929  setrec2lem1  49688
  Copyright terms: Public domain W3C validator