MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfvres Structured version   Visualization version   GIF version

Theorem nfvres 6805
Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
nfvres 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem nfvres
StepHypRef Expression
1 dmres 5911 . . . 4 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
2 inss1 4168 . . . 4 (𝐵 ∩ dom 𝐹) ⊆ 𝐵
31, 2eqsstri 3960 . . 3 dom (𝐹𝐵) ⊆ 𝐵
43sseli 3922 . 2 (𝐴 ∈ dom (𝐹𝐵) → 𝐴𝐵)
5 ndmfv 6799 . 2 𝐴 ∈ dom (𝐹𝐵) → ((𝐹𝐵)‘𝐴) = ∅)
64, 5nsyl5 159 1 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2110  cin 3891  c0 4262  dom cdm 5589  cres 5591  cfv 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5595  df-dm 5599  df-res 5601  df-iota 6389  df-fv 6439
This theorem is referenced by:  fveqres  6811  trpredlem1  9472  fvresval  33735  funpartfv  34241  setrec2lem1  46366
  Copyright terms: Public domain W3C validator