Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfvres | Structured version Visualization version GIF version |
Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
nfvres | ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5902 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
2 | inss1 4159 | . . . 4 ⊢ (𝐵 ∩ dom 𝐹) ⊆ 𝐵 | |
3 | 1, 2 | eqsstri 3951 | . . 3 ⊢ dom (𝐹 ↾ 𝐵) ⊆ 𝐵 |
4 | 3 | sseli 3913 | . 2 ⊢ (𝐴 ∈ dom (𝐹 ↾ 𝐵) → 𝐴 ∈ 𝐵) |
5 | ndmfv 6786 | . 2 ⊢ (¬ 𝐴 ∈ dom (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
6 | 4, 5 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ∅c0 4253 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-res 5592 df-iota 6376 df-fv 6426 |
This theorem is referenced by: fveqres 6798 trpredlem1 9405 fvresval 33647 funpartfv 34174 setrec2lem1 46285 |
Copyright terms: Public domain | W3C validator |