| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfvres | Structured version Visualization version GIF version | ||
| Description: The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfvres | ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5972 | . . . 4 ⊢ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) | |
| 2 | inss1 4196 | . . . 4 ⊢ (𝐵 ∩ dom 𝐹) ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3990 | . . 3 ⊢ dom (𝐹 ↾ 𝐵) ⊆ 𝐵 |
| 4 | 3 | sseli 3939 | . 2 ⊢ (𝐴 ∈ dom (𝐹 ↾ 𝐵) → 𝐴 ∈ 𝐵) |
| 5 | ndmfv 6875 | . 2 ⊢ (¬ 𝐴 ∈ dom (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
| 6 | 4, 5 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ∅c0 4292 dom cdm 5631 ↾ cres 5633 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-res 5643 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: fveqres 6887 fvresval 7315 funpartfv 35926 setrec2lem1 49675 |
| Copyright terms: Public domain | W3C validator |