|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fvixp | Structured version Visualization version GIF version | ||
| Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) | 
| Ref | Expression | 
|---|---|
| fvixp.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | 
| Ref | Expression | 
|---|---|
| fvixp | ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elixp2 8942 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | 1 | simp3bi 1147 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) | 
| 3 | fveq2 6905 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
| 4 | fvixp.1 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | eleq12d 2834 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝐶) ∈ 𝐷)) | 
| 6 | 5 | rspccva 3620 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) | 
| 7 | 2, 6 | sylan 580 | 1 ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 Fn wfn 6555 ‘cfv 6560 Xcixp 8938 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-ixp 8939 | 
| This theorem is referenced by: funcf2 17914 funcpropd 17948 natcl 18002 natpropd 18025 finixpnum 37613 hspdifhsp 46636 | 
| Copyright terms: Public domain | W3C validator |