MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvixp Structured version   Visualization version   GIF version

Theorem fvixp 8892
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fvixp ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 8891 . . 3 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp3bi 1147 . 2 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
3 fveq2 6888 . . . 4 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4 fvixp.1 . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
53, 4eleq12d 2827 . . 3 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ 𝐵 ↔ (𝐹𝐶) ∈ 𝐷))
65rspccva 3611 . 2 ((∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
72, 6sylan 580 1 ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474   Fn wfn 6535  cfv 6540  Xcixp 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548  df-ixp 8888
This theorem is referenced by:  funcf2  17814  funcpropd  17847  natcl  17900  natpropd  17925  finixpnum  36461  hspdifhsp  45318
  Copyright terms: Public domain W3C validator