MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvixp Structured version   Visualization version   GIF version

Theorem fvixp 8836
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fvixp ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 8835 . . 3 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp3bi 1147 . 2 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
3 fveq2 6826 . . . 4 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4 fvixp.1 . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
53, 4eleq12d 2822 . . 3 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ 𝐵 ↔ (𝐹𝐶) ∈ 𝐷))
65rspccva 3578 . 2 ((∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
72, 6sylan 580 1 ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438   Fn wfn 6481  cfv 6486  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-ixp 8832
This theorem is referenced by:  funcf2  17793  funcpropd  17827  natcl  17881  natpropd  17904  finixpnum  37587  hspdifhsp  46601
  Copyright terms: Public domain W3C validator