MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvixp Structured version   Visualization version   GIF version

Theorem fvixp 8648
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fvixp ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 8647 . . 3 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp3bi 1145 . 2 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
3 fveq2 6756 . . . 4 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4 fvixp.1 . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
53, 4eleq12d 2833 . . 3 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ 𝐵 ↔ (𝐹𝐶) ∈ 𝐷))
65rspccva 3551 . 2 ((∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
72, 6sylan 579 1 ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   Fn wfn 6413  cfv 6418  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ixp 8644
This theorem is referenced by:  funcf2  17499  funcpropd  17532  natcl  17585  natpropd  17610  finixpnum  35689  hspdifhsp  44044
  Copyright terms: Public domain W3C validator