MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvixp Structured version   Visualization version   GIF version

Theorem fvixp 8960
Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fvixp ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 8959 . . 3 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
21simp3bi 1147 . 2 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
3 fveq2 6920 . . . 4 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4 fvixp.1 . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
53, 4eleq12d 2838 . . 3 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ 𝐵 ↔ (𝐹𝐶) ∈ 𝐷))
65rspccva 3634 . 2 ((∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
72, 6sylan 579 1 ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   Fn wfn 6568  cfv 6573  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ixp 8956
This theorem is referenced by:  funcf2  17932  funcpropd  17967  natcl  18021  natpropd  18046  finixpnum  37565  hspdifhsp  46537
  Copyright terms: Public domain W3C validator