| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvixp | Structured version Visualization version GIF version | ||
| Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| fvixp.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| fvixp | ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 8920 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | 1 | simp3bi 1147 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 3 | fveq2 6881 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐹‘𝑥) = (𝐹‘𝐶)) | |
| 4 | fvixp.1 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 5 | 3, 4 | eleq12d 2829 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐹‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝐶) ∈ 𝐷)) |
| 6 | 5 | rspccva 3605 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
| 7 | 2, 6 | sylan 580 | 1 ⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹‘𝐶) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 Fn wfn 6531 ‘cfv 6536 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-ixp 8917 |
| This theorem is referenced by: funcf2 17886 funcpropd 17920 natcl 17974 natpropd 17997 finixpnum 37634 hspdifhsp 46612 |
| Copyright terms: Public domain | W3C validator |