MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natcl Structured version   Visualization version   GIF version

Theorem natcl 17912
Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
natcl.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
natcl (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))

Proof of Theorem natcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
3 natixp.b . . 3 𝐵 = (Base‘𝐶)
4 natixp.j . . 3 𝐽 = (Hom ‘𝐷)
51, 2, 3, 4natixp 17911 . 2 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
6 natcl.1 . 2 (𝜑𝑋𝐵)
7 fveq2 6882 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
8 fveq2 6882 . . . 4 (𝑥 = 𝑋 → (𝐾𝑥) = (𝐾𝑋))
97, 8oveq12d 7420 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝐽(𝐾𝑥)) = ((𝐹𝑋)𝐽(𝐾𝑋)))
109fvixp 8893 . 2 ((𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
115, 6, 10syl2anc 583 1 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4627  cfv 6534  (class class class)co 7402  Xcixp 8888  Basecbs 17149  Hom chom 17213   Nat cnat 17900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-ixp 8889  df-func 17813  df-nat 17902
This theorem is referenced by:  fuccocl  17925  fuclid  17927  fucrid  17928  fucass  17929  fucsect  17933  invfuc  17935  fucpropd  17938  evlfcllem  18182  evlfcl  18183  curfuncf  18199  yonedalem3a  18235  yonedalem3b  18240  yonedainv  18242  yonffthlem  18243
  Copyright terms: Public domain W3C validator