| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natcl | Structured version Visualization version GIF version | ||
| Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| natcl.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| natcl | ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | natixp.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 17917 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 6 | natcl.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘𝑥) = (𝐾‘𝑋)) | |
| 9 | 7, 8 | oveq12d 7405 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) = ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 10 | 9 | fvixp 8875 | . 2 ⊢ ((𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 11 | 5, 6, 10 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Xcixp 8870 Basecbs 17179 Hom chom 17231 Nat cnat 17906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-ixp 8871 df-func 17820 df-nat 17908 |
| This theorem is referenced by: fuccocl 17929 fuclid 17931 fucrid 17932 fucass 17933 fucsect 17937 invfuc 17939 fucpropd 17942 evlfcllem 18182 evlfcl 18183 curfuncf 18199 yonedalem3a 18235 yonedalem3b 18240 yonedainv 18242 yonffthlem 18243 natoppf 49215 fuco22natlem1 49328 fuco22natlem2 49329 fuco22natlem 49331 fuco23alem 49337 fucocolem1 49339 fucocolem3 49341 fucoco 49343 fucolid 49347 fucorid 49348 precofvalALT 49354 diag2f1olem 49522 funcsn 49527 concl 49647 coccl 49648 |
| Copyright terms: Public domain | W3C validator |