MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natcl Structured version   Visualization version   GIF version

Theorem natcl 17900
Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
natcl.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
natcl (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))

Proof of Theorem natcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
3 natixp.b . . 3 𝐵 = (Base‘𝐶)
4 natixp.j . . 3 𝐽 = (Hom ‘𝐷)
51, 2, 3, 4natixp 17899 . 2 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
6 natcl.1 . 2 (𝜑𝑋𝐵)
7 fveq2 6888 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
8 fveq2 6888 . . . 4 (𝑥 = 𝑋 → (𝐾𝑥) = (𝐾𝑋))
97, 8oveq12d 7423 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝐽(𝐾𝑥)) = ((𝐹𝑋)𝐽(𝐾𝑋)))
109fvixp 8892 . 2 ((𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
115, 6, 10syl2anc 584 1 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4633  cfv 6540  (class class class)co 7405  Xcixp 8887  Basecbs 17140  Hom chom 17204   Nat cnat 17888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-ixp 8888  df-func 17804  df-nat 17890
This theorem is referenced by:  fuccocl  17913  fuclid  17915  fucrid  17916  fucass  17917  fucsect  17921  invfuc  17923  fucpropd  17926  evlfcllem  18170  evlfcl  18171  curfuncf  18187  yonedalem3a  18223  yonedalem3b  18228  yonedainv  18230  yonffthlem  18231
  Copyright terms: Public domain W3C validator