| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natcl | Structured version Visualization version GIF version | ||
| Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| natcl.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| natcl | ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | natixp.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 17893 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 6 | natcl.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 8 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘𝑥) = (𝐾‘𝑋)) | |
| 9 | 7, 8 | oveq12d 7387 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) = ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 10 | 9 | fvixp 8852 | . 2 ⊢ ((𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 11 | 5, 6, 10 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 ‘cfv 6499 (class class class)co 7369 Xcixp 8847 Basecbs 17155 Hom chom 17207 Nat cnat 17882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-ixp 8848 df-func 17796 df-nat 17884 |
| This theorem is referenced by: fuccocl 17905 fuclid 17907 fucrid 17908 fucass 17909 fucsect 17913 invfuc 17915 fucpropd 17918 evlfcllem 18158 evlfcl 18159 curfuncf 18175 yonedalem3a 18211 yonedalem3b 18216 yonedainv 18218 yonffthlem 18219 natoppf 49191 fuco22natlem1 49304 fuco22natlem2 49305 fuco22natlem 49307 fuco23alem 49313 fucocolem1 49315 fucocolem3 49317 fucoco 49319 fucolid 49323 fucorid 49324 precofvalALT 49330 diag2f1olem 49498 funcsn 49503 concl 49623 coccl 49624 |
| Copyright terms: Public domain | W3C validator |