Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > natcl | Structured version Visualization version GIF version |
Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
natcl.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
natcl | ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
4 | natixp.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
5 | 1, 2, 3, 4 | natixp 17459 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
6 | natcl.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | fveq2 6717 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
8 | fveq2 6717 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘𝑥) = (𝐾‘𝑋)) | |
9 | 7, 8 | oveq12d 7231 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) = ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
10 | 9 | fvixp 8583 | . 2 ⊢ ((𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
11 | 5, 6, 10 | syl2anc 587 | 1 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 〈cop 4547 ‘cfv 6380 (class class class)co 7213 Xcixp 8578 Basecbs 16760 Hom chom 16813 Nat cnat 17448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-ixp 8579 df-func 17364 df-nat 17450 |
This theorem is referenced by: fuccocl 17473 fuclid 17475 fucrid 17476 fucass 17477 fucsect 17481 invfuc 17483 fucpropd 17486 evlfcllem 17729 evlfcl 17730 curfuncf 17746 yonedalem3a 17782 yonedalem3b 17787 yonedainv 17789 yonffthlem 17790 |
Copyright terms: Public domain | W3C validator |