| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natcl | Structured version Visualization version GIF version | ||
| Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| natcl.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| natcl | ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 3 | natixp.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | natixp.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 5 | 1, 2, 3, 4 | natixp 17857 | . 2 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| 6 | natcl.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 8 | fveq2 6817 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘𝑥) = (𝐾‘𝑋)) | |
| 9 | 7, 8 | oveq12d 7359 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) = ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 10 | 9 | fvixp 8821 | . 2 ⊢ ((𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| 11 | 5, 6, 10 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴‘𝑋) ∈ ((𝐹‘𝑋)𝐽(𝐾‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4577 ‘cfv 6476 (class class class)co 7341 Xcixp 8816 Basecbs 17115 Hom chom 17167 Nat cnat 17846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-ixp 8817 df-func 17760 df-nat 17848 |
| This theorem is referenced by: fuccocl 17869 fuclid 17871 fucrid 17872 fucass 17873 fucsect 17877 invfuc 17879 fucpropd 17882 evlfcllem 18122 evlfcl 18123 curfuncf 18139 yonedalem3a 18175 yonedalem3b 18180 yonedainv 18182 yonffthlem 18183 natoppf 49261 fuco22natlem1 49374 fuco22natlem2 49375 fuco22natlem 49377 fuco23alem 49383 fucocolem1 49385 fucocolem3 49387 fucoco 49389 fucolid 49393 fucorid 49394 precofvalALT 49400 diag2f1olem 49568 funcsn 49573 concl 49693 coccl 49694 |
| Copyright terms: Public domain | W3C validator |