![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7408 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩) | |
2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
6 | 2, 3, 4, 5 | funcixp 17813 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 7, 8 | opelxpd 5713 | . . . . 5 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) |
10 | 2fveq3 6893 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩))) | |
11 | 2fveq3 6893 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) | |
12 | 10, 11 | oveq12d 7423 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))) |
13 | fveq2 6888 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝐻‘⟨𝑋, 𝑌⟩)) | |
14 | df-ov 7408 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
15 | 13, 14 | eqtr4di 2790 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
16 | 12, 15 | oveq12d 7423 | . . . . . 6 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
17 | 16 | fvixp 8892 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
18 | 6, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
19 | 1, 18 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
20 | op1stg 7983 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋) | |
21 | 20 | fveq2d 6892 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑋)) |
22 | op2ndg 7984 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌) | |
23 | 22 | fveq2d 6892 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑌)) |
24 | 21, 23 | oveq12d 7423 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
25 | 7, 8, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | oveq1d 7420 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
27 | 19, 26 | eleqtrd 2835 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
28 | elmapi 8839 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 class class class wbr 5147 × cxp 5673 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8816 Xcixp 8887 Basecbs 17140 Hom chom 17204 Func cfunc 17800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-ixp 8888 df-func 17804 |
This theorem is referenced by: funcsect 17818 funcoppc 17821 cofu2 17832 cofucl 17834 cofulid 17836 cofurid 17837 funcres 17842 funcres2 17844 funcres2c 17848 isfull2 17858 isfth2 17862 fthsect 17872 fthmon 17874 fuccocl 17913 fucidcl 17914 invfuc 17923 natpropd 17925 catciso 18057 prfval 18147 prfcl 18151 prf1st 18152 prf2nd 18153 1st2ndprf 18154 evlfcllem 18170 evlfcl 18171 curf1cl 18177 curf2cl 18180 uncf2 18186 curfuncf 18187 uncfcurf 18188 diag2cl 18195 curf2ndf 18196 yonedalem4c 18226 yonedalem3b 18228 yonedainv 18230 yonffthlem 18231 fullthinc 47619 fullthinc2 47620 thincfth 47621 thincciso 47622 |
Copyright terms: Public domain | W3C validator |