![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7407 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩) | |
2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
6 | 2, 3, 4, 5 | funcixp 17824 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 7, 8 | opelxpd 5708 | . . . . 5 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) |
10 | 2fveq3 6889 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩))) | |
11 | 2fveq3 6889 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) | |
12 | 10, 11 | oveq12d 7422 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))) |
13 | fveq2 6884 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝐻‘⟨𝑋, 𝑌⟩)) | |
14 | df-ov 7407 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
15 | 13, 14 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
16 | 12, 15 | oveq12d 7422 | . . . . . 6 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
17 | 16 | fvixp 8895 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
18 | 6, 9, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
19 | 1, 18 | eqeltrid 2831 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
20 | op1stg 7983 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋) | |
21 | 20 | fveq2d 6888 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑋)) |
22 | op2ndg 7984 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌) | |
23 | 22 | fveq2d 6888 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑌)) |
24 | 21, 23 | oveq12d 7422 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
25 | 7, 8, 24 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | oveq1d 7419 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
27 | 19, 26 | eleqtrd 2829 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
28 | elmapi 8842 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 class class class wbr 5141 × cxp 5667 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8819 Xcixp 8890 Basecbs 17151 Hom chom 17215 Func cfunc 17811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-map 8821 df-ixp 8891 df-func 17815 |
This theorem is referenced by: funcsect 17829 funcoppc 17832 cofu2 17843 cofucl 17845 cofulid 17847 cofurid 17848 funcres 17853 funcres2 17855 funcres2c 17861 isfull2 17871 isfth2 17875 fthsect 17885 fthmon 17887 fuccocl 17927 fucidcl 17928 invfuc 17937 natpropd 17939 catciso 18071 prfval 18161 prfcl 18165 prf1st 18166 prf2nd 18167 1st2ndprf 18168 evlfcllem 18184 evlfcl 18185 curf1cl 18191 curf2cl 18194 uncf2 18200 curfuncf 18201 uncfcurf 18202 diag2cl 18209 curf2ndf 18210 yonedalem4c 18240 yonedalem3b 18242 yonedainv 18244 yonffthlem 18245 fullthinc 47921 fullthinc2 47922 thincfth 47923 thincciso 47924 |
Copyright terms: Public domain | W3C validator |