| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7356 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) | |
| 2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 6 | 2, 3, 4, 5 | funcixp 17792 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 7, 8 | opelxpd 5662 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 10 | 2fveq3 6831 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘〈𝑋, 𝑌〉))) | |
| 11 | 2fveq3 6831 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘〈𝑋, 𝑌〉))) | |
| 12 | 10, 11 | oveq12d 7371 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉)))) |
| 13 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) | |
| 14 | df-ov 7356 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 15 | 13, 14 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 16 | 12, 15 | oveq12d 7371 | . . . . . 6 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 17 | 16 | fvixp 8836 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 18 | 6, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 19 | 1, 18 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 20 | op1stg 7943 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 21 | 20 | fveq2d 6830 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
| 22 | op2ndg 7944 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 23 | 22 | fveq2d 6830 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
| 24 | 21, 23 | oveq12d 7371 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 25 | 7, 8, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 26 | 25 | oveq1d 7368 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 27 | 19, 26 | eleqtrd 2830 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 28 | elmapi 8783 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ↑m cmap 8760 Xcixp 8831 Basecbs 17138 Hom chom 17190 Func cfunc 17779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-func 17783 |
| This theorem is referenced by: funcsect 17797 funcoppc 17800 cofu2 17811 cofucl 17813 cofulid 17815 cofurid 17816 funcres 17821 funcres2 17823 funcres2c 17828 isfull2 17838 isfth2 17842 fthsect 17852 fthmon 17854 fuccocl 17892 fucidcl 17893 invfuc 17902 natpropd 17904 catciso 18036 prfval 18123 prfcl 18127 prf1st 18128 prf2nd 18129 1st2ndprf 18130 evlfcllem 18145 evlfcl 18146 curf1cl 18152 curf2cl 18155 uncf2 18161 curfuncf 18162 uncfcurf 18163 diag2cl 18170 curf2ndf 18171 yonedalem4c 18201 yonedalem3b 18203 yonedainv 18205 yonffthlem 18206 funchomf 49083 cofidf2a 49103 imassc 49139 imaid 49140 imaf1co 49141 upciclem2 49153 upeu2 49158 uppropd 49167 uptrlem1 49196 uptrlem3 49198 diag1 49290 diag2f1 49295 fuco112xa 49319 fuco22natlem1 49328 fuco22natlem2 49329 fuco22natlem3 49330 fuco22natlem 49331 fucocolem1 49339 fucocolem3 49341 fucoco 49343 fucolid 49347 prcofdiag1 49379 prcofdiag 49380 oppfdiag1 49400 oppfdiag 49402 functhincfun 49435 fullthinc 49436 fullthinc2 49437 thincfth 49438 thincciso 49439 termcfuncval 49518 |
| Copyright terms: Public domain | W3C validator |