![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7433 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) | |
2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
6 | 2, 3, 4, 5 | funcixp 17917 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 7, 8 | opelxpd 5727 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
10 | 2fveq3 6911 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘〈𝑋, 𝑌〉))) | |
11 | 2fveq3 6911 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘〈𝑋, 𝑌〉))) | |
12 | 10, 11 | oveq12d 7448 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉)))) |
13 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) | |
14 | df-ov 7433 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
15 | 13, 14 | eqtr4di 2792 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
16 | 12, 15 | oveq12d 7448 | . . . . . 6 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
17 | 16 | fvixp 8940 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
18 | 6, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
19 | 1, 18 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
20 | op1stg 8024 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
21 | 20 | fveq2d 6910 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
22 | op2ndg 8025 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
23 | 22 | fveq2d 6910 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
24 | 21, 23 | oveq12d 7448 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
25 | 7, 8, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | oveq1d 7445 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
27 | 19, 26 | eleqtrd 2840 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
28 | elmapi 8887 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 〈cop 4636 class class class wbr 5147 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 1st c1st 8010 2nd c2nd 8011 ↑m cmap 8864 Xcixp 8935 Basecbs 17244 Hom chom 17308 Func cfunc 17904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-map 8866 df-ixp 8936 df-func 17908 |
This theorem is referenced by: funcsect 17922 funcoppc 17925 cofu2 17936 cofucl 17938 cofulid 17940 cofurid 17941 funcres 17946 funcres2 17948 funcres2c 17954 isfull2 17964 isfth2 17968 fthsect 17978 fthmon 17980 fuccocl 18020 fucidcl 18021 invfuc 18030 natpropd 18032 catciso 18164 prfval 18254 prfcl 18258 prf1st 18259 prf2nd 18260 1st2ndprf 18261 evlfcllem 18277 evlfcl 18278 curf1cl 18284 curf2cl 18287 uncf2 18293 curfuncf 18294 uncfcurf 18295 diag2cl 18302 curf2ndf 18303 yonedalem4c 18333 yonedalem3b 18335 yonedainv 18337 yonffthlem 18338 upciclem2 48812 upeu2 48817 fullthinc 48845 fullthinc2 48846 thincfth 48847 thincciso 48848 |
Copyright terms: Public domain | W3C validator |