MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf2 Structured version   Visualization version   GIF version

Theorem funcf2 17881
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b 𝐵 = (Base‘𝐷)
funcixp.h 𝐻 = (Hom ‘𝐷)
funcixp.j 𝐽 = (Hom ‘𝐸)
funcixp.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcf2.x (𝜑𝑋𝐵)
funcf2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
funcf2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem funcf2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7408 . . . 4 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
2 funcixp.b . . . . . 6 𝐵 = (Base‘𝐷)
3 funcixp.h . . . . . 6 𝐻 = (Hom ‘𝐷)
4 funcixp.j . . . . . 6 𝐽 = (Hom ‘𝐸)
5 funcixp.f . . . . . 6 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
62, 3, 4, 5funcixp 17880 . . . . 5 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
7 funcf2.x . . . . . 6 (𝜑𝑋𝐵)
8 funcf2.y . . . . . 6 (𝜑𝑌𝐵)
97, 8opelxpd 5693 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 2fveq3 6881 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)))
11 2fveq3 6881 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))
1210, 11oveq12d 7423 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))))
13 fveq2 6876 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
14 df-ov 7408 . . . . . . . 8 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1513, 14eqtr4di 2788 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝑋𝐻𝑌))
1612, 15oveq12d 7423 . . . . . 6 (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
1716fvixp 8916 . . . . 5 ((𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
186, 9, 17syl2anc 584 . . . 4 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
191, 18eqeltrid 2838 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
20 op1stg 8000 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2120fveq2d 6880 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑋))
22 op2ndg 8001 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2322fveq2d 6880 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑌))
2421, 23oveq12d 7423 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
257, 8, 24syl2anc 584 . . . 4 (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2625oveq1d 7420 . . 3 (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
2719, 26eleqtrd 2836 . 2 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
28 elmapi 8863 . 2 ((𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2927, 28syl 17 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  m cmap 8840  Xcixp 8911  Basecbs 17228  Hom chom 17282   Func cfunc 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-ixp 8912  df-func 17871
This theorem is referenced by:  funcsect  17885  funcoppc  17888  cofu2  17899  cofucl  17901  cofulid  17903  cofurid  17904  funcres  17909  funcres2  17911  funcres2c  17916  isfull2  17926  isfth2  17930  fthsect  17940  fthmon  17942  fuccocl  17980  fucidcl  17981  invfuc  17990  natpropd  17992  catciso  18124  prfval  18211  prfcl  18215  prf1st  18216  prf2nd  18217  1st2ndprf  18218  evlfcllem  18233  evlfcl  18234  curf1cl  18240  curf2cl  18243  uncf2  18249  curfuncf  18250  uncfcurf  18251  diag2cl  18258  curf2ndf  18259  yonedalem4c  18289  yonedalem3b  18291  yonedainv  18293  yonffthlem  18294  funchomf  49057  imassc  49093  imaid  49094  imaf1co  49095  upciclem2  49102  upeu2  49107  diag1  49215  diag2f1  49220  fuco112xa  49244  fuco22natlem1  49253  fuco22natlem2  49254  fuco22natlem3  49255  fuco22natlem  49256  fucocolem1  49264  fucocolem3  49266  fucoco  49268  fucolid  49272  functhincfun  49335  fullthinc  49336  fullthinc2  49337  thincfth  49338  thincciso  49339  termcfuncval  49417
  Copyright terms: Public domain W3C validator