MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf2 Structured version   Visualization version   GIF version

Theorem funcf2 17754
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b 𝐵 = (Base‘𝐷)
funcixp.h 𝐻 = (Hom ‘𝐷)
funcixp.j 𝐽 = (Hom ‘𝐸)
funcixp.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcf2.x (𝜑𝑋𝐵)
funcf2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
funcf2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem funcf2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7360 . . . 4 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
2 funcixp.b . . . . . 6 𝐵 = (Base‘𝐷)
3 funcixp.h . . . . . 6 𝐻 = (Hom ‘𝐷)
4 funcixp.j . . . . . 6 𝐽 = (Hom ‘𝐸)
5 funcixp.f . . . . . 6 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
62, 3, 4, 5funcixp 17753 . . . . 5 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
7 funcf2.x . . . . . 6 (𝜑𝑋𝐵)
8 funcf2.y . . . . . 6 (𝜑𝑌𝐵)
97, 8opelxpd 5671 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 2fveq3 6847 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)))
11 2fveq3 6847 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))
1210, 11oveq12d 7375 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))))
13 fveq2 6842 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
14 df-ov 7360 . . . . . . . 8 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1513, 14eqtr4di 2794 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝑋𝐻𝑌))
1612, 15oveq12d 7375 . . . . . 6 (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
1716fvixp 8840 . . . . 5 ((𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
186, 9, 17syl2anc 584 . . . 4 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
191, 18eqeltrid 2842 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
20 op1stg 7933 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2120fveq2d 6846 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑋))
22 op2ndg 7934 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2322fveq2d 6846 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑌))
2421, 23oveq12d 7375 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
257, 8, 24syl2anc 584 . . . 4 (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2625oveq1d 7372 . . 3 (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
2719, 26eleqtrd 2840 . 2 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
28 elmapi 8787 . 2 ((𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2927, 28syl 17 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4592   class class class wbr 5105   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  m cmap 8765  Xcixp 8835  Basecbs 17083  Hom chom 17144   Func cfunc 17740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-ixp 8836  df-func 17744
This theorem is referenced by:  funcsect  17758  funcoppc  17761  cofu2  17772  cofucl  17774  cofulid  17776  cofurid  17777  funcres  17782  funcres2  17784  funcres2c  17788  isfull2  17798  isfth2  17802  fthsect  17812  fthmon  17814  fuccocl  17853  fucidcl  17854  invfuc  17863  natpropd  17865  catciso  17997  prfval  18087  prfcl  18091  prf1st  18092  prf2nd  18093  1st2ndprf  18094  evlfcllem  18110  evlfcl  18111  curf1cl  18117  curf2cl  18120  uncf2  18126  curfuncf  18127  uncfcurf  18128  diag2cl  18135  curf2ndf  18136  yonedalem4c  18166  yonedalem3b  18168  yonedainv  18170  yonffthlem  18171  fullthinc  47056  fullthinc2  47057  thincfth  47058  thincciso  47059
  Copyright terms: Public domain W3C validator