![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version |
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7423 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩) | |
2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
6 | 2, 3, 4, 5 | funcixp 17853 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 7, 8 | opelxpd 5717 | . . . . 5 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) |
10 | 2fveq3 6902 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩))) | |
11 | 2fveq3 6902 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) | |
12 | 10, 11 | oveq12d 7438 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))) |
13 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝐻‘⟨𝑋, 𝑌⟩)) | |
14 | df-ov 7423 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
15 | 13, 14 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
16 | 12, 15 | oveq12d 7438 | . . . . . 6 ⊢ (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
17 | 16 | fvixp 8921 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
18 | 6, 9, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
19 | 1, 18 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌))) |
20 | op1stg 8005 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋) | |
21 | 20 | fveq2d 6901 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑋)) |
22 | op2ndg 8006 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌) | |
23 | 22 | fveq2d 6901 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹‘𝑌)) |
24 | 21, 23 | oveq12d 7438 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
25 | 7, 8, 24 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | oveq1d 7435 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
27 | 19, 26 | eleqtrd 2831 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
28 | elmapi 8868 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⟨cop 4635 class class class wbr 5148 × cxp 5676 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 ↑m cmap 8845 Xcixp 8916 Basecbs 17180 Hom chom 17244 Func cfunc 17840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-map 8847 df-ixp 8917 df-func 17844 |
This theorem is referenced by: funcsect 17858 funcoppc 17861 cofu2 17872 cofucl 17874 cofulid 17876 cofurid 17877 funcres 17882 funcres2 17884 funcres2c 17890 isfull2 17900 isfth2 17904 fthsect 17914 fthmon 17916 fuccocl 17956 fucidcl 17957 invfuc 17966 natpropd 17968 catciso 18100 prfval 18190 prfcl 18194 prf1st 18195 prf2nd 18196 1st2ndprf 18197 evlfcllem 18213 evlfcl 18214 curf1cl 18220 curf2cl 18223 uncf2 18229 curfuncf 18230 uncfcurf 18231 diag2cl 18238 curf2ndf 18239 yonedalem4c 18269 yonedalem3b 18271 yonedainv 18273 yonffthlem 18274 fullthinc 48052 fullthinc2 48053 thincfth 48054 thincciso 48055 |
Copyright terms: Public domain | W3C validator |