| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) | |
| 2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 6 | 2, 3, 4, 5 | funcixp 17776 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 7, 8 | opelxpd 5658 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 10 | 2fveq3 6833 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘〈𝑋, 𝑌〉))) | |
| 11 | 2fveq3 6833 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘〈𝑋, 𝑌〉))) | |
| 12 | 10, 11 | oveq12d 7370 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉)))) |
| 13 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) | |
| 14 | df-ov 7355 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 15 | 13, 14 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 16 | 12, 15 | oveq12d 7370 | . . . . . 6 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 17 | 16 | fvixp 8832 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 18 | 6, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 19 | 1, 18 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 20 | op1stg 7939 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 21 | 20 | fveq2d 6832 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
| 22 | op2ndg 7940 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 23 | 22 | fveq2d 6832 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
| 24 | 21, 23 | oveq12d 7370 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 25 | 7, 8, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 26 | 25 | oveq1d 7367 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 27 | 19, 26 | eleqtrd 2835 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 28 | elmapi 8779 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 × cxp 5617 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 ↑m cmap 8756 Xcixp 8827 Basecbs 17122 Hom chom 17174 Func cfunc 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-func 17767 |
| This theorem is referenced by: funcsect 17781 funcoppc 17784 cofu2 17795 cofucl 17797 cofulid 17799 cofurid 17800 funcres 17805 funcres2 17807 funcres2c 17812 isfull2 17822 isfth2 17826 fthsect 17836 fthmon 17838 fuccocl 17876 fucidcl 17877 invfuc 17886 natpropd 17888 catciso 18020 prfval 18107 prfcl 18111 prf1st 18112 prf2nd 18113 1st2ndprf 18114 evlfcllem 18129 evlfcl 18130 curf1cl 18136 curf2cl 18139 uncf2 18145 curfuncf 18146 uncfcurf 18147 diag2cl 18154 curf2ndf 18155 yonedalem4c 18185 yonedalem3b 18187 yonedainv 18189 yonffthlem 18190 funchomf 49222 cofidf2a 49242 imassc 49278 imaid 49279 imaf1co 49280 upciclem2 49292 upeu2 49297 uppropd 49306 uptrlem1 49335 uptrlem3 49337 diag1 49429 diag2f1 49434 fuco112xa 49458 fuco22natlem1 49467 fuco22natlem2 49468 fuco22natlem3 49469 fuco22natlem 49470 fucocolem1 49478 fucocolem3 49480 fucoco 49482 fucolid 49486 prcofdiag1 49518 prcofdiag 49519 oppfdiag1 49539 oppfdiag 49541 functhincfun 49574 fullthinc 49575 fullthinc2 49576 thincfth 49577 thincciso 49578 termcfuncval 49657 |
| Copyright terms: Public domain | W3C validator |