MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcf2 Structured version   Visualization version   GIF version

Theorem funcf2 17583
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b 𝐵 = (Base‘𝐷)
funcixp.h 𝐻 = (Hom ‘𝐷)
funcixp.j 𝐽 = (Hom ‘𝐸)
funcixp.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcf2.x (𝜑𝑋𝐵)
funcf2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
funcf2 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))

Proof of Theorem funcf2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7278 . . . 4 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
2 funcixp.b . . . . . 6 𝐵 = (Base‘𝐷)
3 funcixp.h . . . . . 6 𝐻 = (Hom ‘𝐷)
4 funcixp.j . . . . . 6 𝐽 = (Hom ‘𝐸)
5 funcixp.f . . . . . 6 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
62, 3, 4, 5funcixp 17582 . . . . 5 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
7 funcf2.x . . . . . 6 (𝜑𝑋𝐵)
8 funcf2.y . . . . . 6 (𝜑𝑌𝐵)
97, 8opelxpd 5627 . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
10 2fveq3 6779 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(1st𝑧)) = (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)))
11 2fveq3 6779 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐹‘(2nd𝑧)) = (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)))
1210, 11oveq12d 7293 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) = ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))))
13 fveq2 6774 . . . . . . . 8 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
14 df-ov 7278 . . . . . . . 8 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1513, 14eqtr4di 2796 . . . . . . 7 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝐻𝑧) = (𝑋𝐻𝑌))
1612, 15oveq12d 7293 . . . . . 6 (𝑧 = ⟨𝑋, 𝑌⟩ → (((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
1716fvixp 8690 . . . . 5 ((𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
186, 9, 17syl2anc 584 . . . 4 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
191, 18eqeltrid 2843 . . 3 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)))
20 op1stg 7843 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2120fveq2d 6778 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(1st ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑋))
22 op2ndg 7844 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
2322fveq2d 6778 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝐹‘(2nd ‘⟨𝑋, 𝑌⟩)) = (𝐹𝑌))
2421, 23oveq12d 7293 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
257, 8, 24syl2anc 584 . . . 4 (𝜑 → ((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2625oveq1d 7290 . . 3 (𝜑 → (((𝐹‘(1st ‘⟨𝑋, 𝑌⟩))𝐽(𝐹‘(2nd ‘⟨𝑋, 𝑌⟩))) ↑m (𝑋𝐻𝑌)) = (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
2719, 26eleqtrd 2841 . 2 (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)))
28 elmapi 8637 . 2 ((𝑋𝐺𝑌) ∈ (((𝐹𝑋)𝐽(𝐹𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2927, 28syl 17 1 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Basecbs 16912  Hom chom 16973   Func cfunc 17569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-func 17573
This theorem is referenced by:  funcsect  17587  funcoppc  17590  cofu2  17601  cofucl  17603  cofulid  17605  cofurid  17606  funcres  17611  funcres2  17613  funcres2c  17617  isfull2  17627  isfth2  17631  fthsect  17641  fthmon  17643  fuccocl  17682  fucidcl  17683  invfuc  17692  natpropd  17694  catciso  17826  prfval  17916  prfcl  17920  prf1st  17921  prf2nd  17922  1st2ndprf  17923  evlfcllem  17939  evlfcl  17940  curf1cl  17946  curf2cl  17949  uncf2  17955  curfuncf  17956  uncfcurf  17957  diag2cl  17964  curf2ndf  17965  yonedalem4c  17995  yonedalem3b  17997  yonedainv  17999  yonffthlem  18000  fullthinc  46327  fullthinc2  46328  thincfth  46329  thincciso  46330
  Copyright terms: Public domain W3C validator