| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcixp.b | ⊢ 𝐵 = (Base‘𝐷) |
| funcixp.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| funcixp.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| funcixp.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| funcf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| funcf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| funcf2 | ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . . . 4 ⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) | |
| 2 | funcixp.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | funcixp.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 4 | funcixp.j | . . . . . 6 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 5 | funcixp.f | . . . . . 6 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 6 | 2, 3, 4, 5 | funcixp 17836 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧))) |
| 7 | funcf2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | funcf2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 7, 8 | opelxpd 5680 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 10 | 2fveq3 6866 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(1st ‘𝑧)) = (𝐹‘(1st ‘〈𝑋, 𝑌〉))) | |
| 11 | 2fveq3 6866 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐹‘(2nd ‘𝑧)) = (𝐹‘(2nd ‘〈𝑋, 𝑌〉))) | |
| 12 | 10, 11 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) = ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉)))) |
| 13 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) | |
| 14 | df-ov 7393 | . . . . . . . 8 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 15 | 13, 14 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 16 | 12, 15 | oveq12d 7408 | . . . . . 6 ⊢ (𝑧 = 〈𝑋, 𝑌〉 → (((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) = (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 17 | 16 | fvixp 8878 | . . . . 5 ⊢ ((𝐺 ∈ X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st ‘𝑧))𝐽(𝐹‘(2nd ‘𝑧))) ↑m (𝐻‘𝑧)) ∧ 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 18 | 6, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 19 | 1, 18 | eqeltrid 2833 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌))) |
| 20 | op1stg 7983 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 21 | 20 | fveq2d 6865 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(1st ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑋)) |
| 22 | op2ndg 7984 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 23 | 22 | fveq2d 6865 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(2nd ‘〈𝑋, 𝑌〉)) = (𝐹‘𝑌)) |
| 24 | 21, 23 | oveq12d 7408 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 25 | 7, 8, 24 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 26 | 25 | oveq1d 7405 | . . 3 ⊢ (𝜑 → (((𝐹‘(1st ‘〈𝑋, 𝑌〉))𝐽(𝐹‘(2nd ‘〈𝑋, 𝑌〉))) ↑m (𝑋𝐻𝑌)) = (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 27 | 19, 26 | eleqtrd 2831 | . 2 ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌))) |
| 28 | elmapi 8825 | . 2 ⊢ ((𝑋𝐺𝑌) ∈ (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ↑m (𝑋𝐻𝑌)) → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | |
| 29 | 27, 28 | syl 17 | 1 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8802 Xcixp 8873 Basecbs 17186 Hom chom 17238 Func cfunc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-func 17827 |
| This theorem is referenced by: funcsect 17841 funcoppc 17844 cofu2 17855 cofucl 17857 cofulid 17859 cofurid 17860 funcres 17865 funcres2 17867 funcres2c 17872 isfull2 17882 isfth2 17886 fthsect 17896 fthmon 17898 fuccocl 17936 fucidcl 17937 invfuc 17946 natpropd 17948 catciso 18080 prfval 18167 prfcl 18171 prf1st 18172 prf2nd 18173 1st2ndprf 18174 evlfcllem 18189 evlfcl 18190 curf1cl 18196 curf2cl 18199 uncf2 18205 curfuncf 18206 uncfcurf 18207 diag2cl 18214 curf2ndf 18215 yonedalem4c 18245 yonedalem3b 18247 yonedainv 18249 yonffthlem 18250 funchomf 49090 cofidf2a 49110 imassc 49146 imaid 49147 imaf1co 49148 upciclem2 49160 upeu2 49165 uppropd 49174 uptrlem1 49203 uptrlem3 49205 diag1 49297 diag2f1 49302 fuco112xa 49326 fuco22natlem1 49335 fuco22natlem2 49336 fuco22natlem3 49337 fuco22natlem 49338 fucocolem1 49346 fucocolem3 49348 fucoco 49350 fucolid 49354 prcofdiag1 49386 prcofdiag 49387 oppfdiag1 49407 oppfdiag 49409 functhincfun 49442 fullthinc 49443 fullthinc2 49444 thincfth 49445 thincciso 49446 termcfuncval 49525 |
| Copyright terms: Public domain | W3C validator |