Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpfn | Structured version Visualization version GIF version |
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
ixpfn | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6508 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
2 | elixp2 8647 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | |
3 | 2 | simp2bi 1144 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) |
4 | 1, 3 | vtoclga 3503 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ixp 8644 |
This theorem is referenced by: ixpprc 8665 undifixp 8680 resixpfo 8682 boxcutc 8687 ixpiunwdom 9279 prdsbasfn 17099 xpsff1o 17195 sscfn1 17446 funcfn2 17500 natfn 17586 pthaus 22697 ptuncnv 22866 ptunhmeo 22867 ptcmplem2 23112 prdsbl 23553 finixpnum 35689 upixp 35814 prdstotbnd 35879 elixpconstg 42528 rrxsnicc 43731 ioorrnopnxrlem 43737 hoidmvlelem3 44025 hspdifhsp 44044 hspmbllem2 44055 |
Copyright terms: Public domain | W3C validator |