MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfn Structured version   Visualization version   GIF version

Theorem ixpfn 8879
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem ixpfn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 6612 . 2 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 elixp2 8877 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simp2bi 1146 . 2 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
41, 3vtoclga 3546 1 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045  Vcvv 3450   Fn wfn 6509  cfv 6514  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ixp 8874
This theorem is referenced by:  ixpprc  8895  undifixp  8910  resixpfo  8912  boxcutc  8917  ixpiunwdom  9550  prdsbasfn  17441  xpsff1o  17537  sscfn1  17786  funcfn2  17838  natfn  17926  pthaus  23532  ptuncnv  23701  ptunhmeo  23702  ptcmplem2  23947  prdsbl  24386  finixpnum  37606  upixp  37730  prdstotbnd  37795  elixpconstg  45090  rrxsnicc  46305  ioorrnopnxrlem  46311  hoidmvlelem3  46602  hspdifhsp  46621  hspmbllem2  46632
  Copyright terms: Public domain W3C validator