Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpfn | Structured version Visualization version GIF version |
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
Ref | Expression |
---|---|
ixpfn | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6470 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
2 | elixp2 8582 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | |
3 | 2 | simp2bi 1148 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) |
4 | 1, 3 | vtoclga 3489 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 Fn wfn 6375 ‘cfv 6380 Xcixp 8578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 df-ixp 8579 |
This theorem is referenced by: ixpprc 8600 undifixp 8615 resixpfo 8617 boxcutc 8622 ixpiunwdom 9206 prdsbasfn 16976 xpsff1o 17072 sscfn1 17322 funcfn2 17375 natfn 17461 pthaus 22535 ptuncnv 22704 ptunhmeo 22705 ptcmplem2 22950 prdsbl 23389 finixpnum 35499 upixp 35624 prdstotbnd 35689 elixpconstg 42312 rrxsnicc 43516 ioorrnopnxrlem 43522 hoidmvlelem3 43810 hspdifhsp 43829 hspmbllem2 43840 |
Copyright terms: Public domain | W3C validator |