MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpfn Structured version   Visualization version   GIF version

Theorem ixpfn 8897
Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
ixpfn (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem ixpfn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 6641 . 2 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 elixp2 8895 . . 3 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
32simp2bi 1147 . 2 (𝑓X𝑥𝐴 𝐵𝑓 Fn 𝐴)
41, 3vtoclga 3566 1 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3062  Vcvv 3475   Fn wfn 6539  cfv 6544  Xcixp 8891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-ixp 8892
This theorem is referenced by:  ixpprc  8913  undifixp  8928  resixpfo  8930  boxcutc  8935  ixpiunwdom  9585  prdsbasfn  17417  xpsff1o  17513  sscfn1  17764  funcfn2  17819  natfn  17905  pthaus  23142  ptuncnv  23311  ptunhmeo  23312  ptcmplem2  23557  prdsbl  24000  finixpnum  36473  upixp  36597  prdstotbnd  36662  elixpconstg  43778  rrxsnicc  45016  ioorrnopnxrlem  45022  hoidmvlelem3  45313  hspdifhsp  45332  hspmbllem2  45343
  Copyright terms: Public domain W3C validator