| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpfn | Structured version Visualization version GIF version | ||
| Description: A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.) |
| Ref | Expression |
|---|---|
| ixpfn | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 6612 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
| 2 | elixp2 8877 | . . 3 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 ∈ V ∧ 𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | |
| 3 | 2 | simp2bi 1146 | . 2 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴) |
| 4 | 1, 3 | vtoclga 3546 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 Fn wfn 6509 ‘cfv 6514 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ixp 8874 |
| This theorem is referenced by: ixpprc 8895 undifixp 8910 resixpfo 8912 boxcutc 8917 ixpiunwdom 9550 prdsbasfn 17441 xpsff1o 17537 sscfn1 17786 funcfn2 17838 natfn 17926 pthaus 23532 ptuncnv 23701 ptunhmeo 23702 ptcmplem2 23947 prdsbl 24386 finixpnum 37606 upixp 37730 prdstotbnd 37795 elixpconstg 45090 rrxsnicc 46305 ioorrnopnxrlem 46311 hoidmvlelem3 46602 hspdifhsp 46621 hspmbllem2 46632 |
| Copyright terms: Public domain | W3C validator |