Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvresval Structured version   Visualization version   GIF version

Theorem fvresval 33769
Description: The value of a function at a restriction is either null or the same as the function itself. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
fvresval (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem fvresval
StepHypRef Expression
1 exmid 891 . 2 (𝐴𝐵 ∨ ¬ 𝐴𝐵)
2 fvres 6811 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
3 nfvres 6830 . . 3 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
42, 3orim12i 905 . 2 ((𝐴𝐵 ∨ ¬ 𝐴𝐵) → (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅))
51, 4ax-mp 5 1 (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wcel 2101  c0 4259  cres 5593  cfv 6447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-xp 5597  df-dm 5601  df-res 5603  df-iota 6399  df-fv 6455
This theorem is referenced by:  sltres  33893
  Copyright terms: Public domain W3C validator