MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresval Structured version   Visualization version   GIF version

Theorem fvresval 7336
Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
fvresval (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem fvresval
StepHypRef Expression
1 exmid 894 . 2 (𝐴𝐵 ∨ ¬ 𝐴𝐵)
2 fvres 6880 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
3 nfvres 6902 . . 3 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
42, 3orim12i 908 . 2 ((𝐴𝐵 ∨ ¬ 𝐴𝐵) → (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅))
51, 4ax-mp 5 1 (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  c0 4299  cres 5643  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-dm 5651  df-res 5653  df-iota 6467  df-fv 6522
This theorem is referenced by:  sltres  27581
  Copyright terms: Public domain W3C validator