MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresval Structured version   Visualization version   GIF version

Theorem fvresval 7372
Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
fvresval (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem fvresval
StepHypRef Expression
1 exmid 892 . 2 (𝐴𝐵 ∨ ¬ 𝐴𝐵)
2 fvres 6921 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
3 nfvres 6943 . . 3 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
42, 3orim12i 906 . 2 ((𝐴𝐵 ∨ ¬ 𝐴𝐵) → (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅))
51, 4ax-mp 5 1 (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1533  wcel 2098  c0 4326  cres 5684  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5688  df-dm 5692  df-res 5694  df-iota 6505  df-fv 6561
This theorem is referenced by:  sltres  27623
  Copyright terms: Public domain W3C validator