![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvresval | Structured version Visualization version GIF version |
Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.) |
Ref | Expression |
---|---|
fvresval | ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 894 | . 2 ⊢ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) | |
2 | fvres 6926 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
3 | nfvres 6948 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
4 | 2, 3 | orim12i 908 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∅c0 4339 ↾ cres 5691 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-res 5701 df-iota 6516 df-fv 6571 |
This theorem is referenced by: sltres 27722 |
Copyright terms: Public domain | W3C validator |