MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvresval Structured version   Visualization version   GIF version

Theorem fvresval 7300
Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
fvresval (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)

Proof of Theorem fvresval
StepHypRef Expression
1 exmid 894 . 2 (𝐴𝐵 ∨ ¬ 𝐴𝐵)
2 fvres 6849 . . 3 (𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
3 nfvres 6868 . . 3 𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
42, 3orim12i 908 . 2 ((𝐴𝐵 ∨ ¬ 𝐴𝐵) → (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅))
51, 4ax-mp 5 1 (((𝐹𝐵)‘𝐴) = (𝐹𝐴) ∨ ((𝐹𝐵)‘𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  c0 4282  cres 5623  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-dm 5631  df-res 5633  df-iota 6444  df-fv 6496
This theorem is referenced by:  sltres  27604
  Copyright terms: Public domain W3C validator