| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvresval | Structured version Visualization version GIF version | ||
| Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fvresval | ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 894 | . 2 ⊢ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) | |
| 2 | fvres 6880 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
| 3 | nfvres 6902 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
| 4 | 2, 3 | orim12i 908 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ↾ cres 5643 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-res 5653 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: sltres 27581 |
| Copyright terms: Public domain | W3C validator |