| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvresval | Structured version Visualization version GIF version | ||
| Description: The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fvresval | ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 894 | . 2 ⊢ (𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) | |
| 2 | fvres 6841 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | |
| 3 | nfvres 6860 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | |
| 4 | 2, 3 | orim12i 908 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ ¬ 𝐴 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∅c0 4283 ↾ cres 5618 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-res 5628 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: sltres 27602 |
| Copyright terms: Public domain | W3C validator |