![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gaorb | Structured version Visualization version GIF version |
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
gaorb.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gaorb | ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7370 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴)) | |
2 | eqeq12 2748 | . . . . . 6 ⊢ (((𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) | |
3 | 1, 2 | sylan 580 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) |
4 | 3 | rexbidv 3171 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵)) |
5 | oveq1 7369 | . . . . . 6 ⊢ (𝑔 = ℎ → (𝑔 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
6 | 5 | eqeq1d 2733 | . . . . 5 ⊢ (𝑔 = ℎ → ((𝑔 ⊕ 𝐴) = 𝐵 ↔ (ℎ ⊕ 𝐴) = 𝐵)) |
7 | 6 | cbvrexvw 3224 | . . . 4 ⊢ (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) |
8 | 4, 7 | bitrdi 286 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
9 | gaorb.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} | |
10 | vex 3450 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
11 | vex 3450 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
12 | 10, 11 | prss 4785 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌) |
13 | 12 | anbi1i 624 | . . . . 5 ⊢ (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)) |
14 | 13 | opabbii 5177 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
15 | 9, 14 | eqtr4i 2762 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
16 | 8, 15 | brab2a 5730 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
17 | df-3an 1089 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | |
18 | 16, 17 | bitr4i 277 | 1 ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 ⊆ wss 3913 {cpr 4593 class class class wbr 5110 {copab 5172 (class class class)co 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-iota 6453 df-fv 6509 df-ov 7365 |
This theorem is referenced by: gaorber 19102 orbsta 19107 sylow2alem1 19413 sylow2alem2 19414 sylow3lem3 19425 lsmsnorb 32245 |
Copyright terms: Public domain | W3C validator |