![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gaorb | Structured version Visualization version GIF version |
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
Ref | Expression |
---|---|
gaorb.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
Ref | Expression |
---|---|
gaorb | ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7422 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴)) | |
2 | eqeq12 2744 | . . . . . 6 ⊢ (((𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) | |
3 | 1, 2 | sylan 579 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) |
4 | 3 | rexbidv 3173 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵)) |
5 | oveq1 7421 | . . . . . 6 ⊢ (𝑔 = ℎ → (𝑔 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
6 | 5 | eqeq1d 2729 | . . . . 5 ⊢ (𝑔 = ℎ → ((𝑔 ⊕ 𝐴) = 𝐵 ↔ (ℎ ⊕ 𝐴) = 𝐵)) |
7 | 6 | cbvrexvw 3230 | . . . 4 ⊢ (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) |
8 | 4, 7 | bitrdi 287 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
9 | gaorb.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} | |
10 | vex 3473 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
11 | vex 3473 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
12 | 10, 11 | prss 4819 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌) |
13 | 12 | anbi1i 623 | . . . . 5 ⊢ (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)) |
14 | 13 | opabbii 5209 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
15 | 9, 14 | eqtr4i 2758 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
16 | 8, 15 | brab2a 5765 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
17 | df-3an 1087 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | |
18 | 16, 17 | bitr4i 278 | 1 ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ⊆ wss 3944 {cpr 4626 class class class wbr 5142 {copab 5204 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: gaorber 19243 orbsta 19248 sylow2alem1 19556 sylow2alem2 19557 sylow3lem3 19568 lsmsnorb 33027 |
Copyright terms: Public domain | W3C validator |