| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gaorb | Structured version Visualization version GIF version | ||
| Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaorb.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
| Ref | Expression |
|---|---|
| gaorb | ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴)) | |
| 2 | eqeq12 2748 | . . . . . 6 ⊢ (((𝑔 ⊕ 𝑥) = (𝑔 ⊕ 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) | |
| 3 | 1, 2 | sylan 580 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑔 ⊕ 𝑥) = 𝑦 ↔ (𝑔 ⊕ 𝐴) = 𝐵)) |
| 4 | 3 | rexbidv 3156 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵)) |
| 5 | oveq1 7353 | . . . . . 6 ⊢ (𝑔 = ℎ → (𝑔 ⊕ 𝐴) = (ℎ ⊕ 𝐴)) | |
| 6 | 5 | eqeq1d 2733 | . . . . 5 ⊢ (𝑔 = ℎ → ((𝑔 ⊕ 𝐴) = 𝐵 ↔ (ℎ ⊕ 𝐴) = 𝐵)) |
| 7 | 6 | cbvrexvw 3211 | . . . 4 ⊢ (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝐴) = 𝐵 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) |
| 8 | 4, 7 | bitrdi 287 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦 ↔ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
| 9 | gaorb.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} | |
| 10 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 11 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 12 | 10, 11 | prss 4769 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌) |
| 13 | 12 | anbi1i 624 | . . . . 5 ⊢ (((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)) |
| 14 | 13 | opabbii 5156 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
| 15 | 9, 14 | eqtr4i 2757 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
| 16 | 8, 15 | brab2a 5707 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
| 17 | df-3an 1088 | . 2 ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵) ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌) ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | |
| 18 | 16, 17 | bitr4i 278 | 1 ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 {cpr 4575 class class class wbr 5089 {copab 5151 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: gaorber 19220 orbsta 19225 sylow2alem1 19529 sylow2alem2 19530 sylow3lem3 19541 lsmsnorb 33356 |
| Copyright terms: Public domain | W3C validator |