MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorb Structured version   Visualization version   GIF version

Theorem gaorb 19275
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypothesis
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
gaorb (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Distinct variable groups:   𝑔,,𝑥,𝑦,𝐴   𝐵,𝑔,,𝑥,𝑦   ,   ,𝑔,,𝑥,𝑦   𝑔,𝑋,,𝑥,𝑦   ,𝑌,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorb
StepHypRef Expression
1 oveq2 7407 . . . . . 6 (𝑥 = 𝐴 → (𝑔 𝑥) = (𝑔 𝐴))
2 eqeq12 2751 . . . . . 6 (((𝑔 𝑥) = (𝑔 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
43rexbidv 3162 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑔𝑋 (𝑔 𝐴) = 𝐵))
5 oveq1 7406 . . . . . 6 (𝑔 = → (𝑔 𝐴) = ( 𝐴))
65eqeq1d 2736 . . . . 5 (𝑔 = → ((𝑔 𝐴) = 𝐵 ↔ ( 𝐴) = 𝐵))
76cbvrexvw 3219 . . . 4 (∃𝑔𝑋 (𝑔 𝐴) = 𝐵 ↔ ∃𝑋 ( 𝐴) = 𝐵)
84, 7bitrdi 287 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑋 ( 𝐴) = 𝐵))
9 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
10 vex 3461 . . . . . . 7 𝑥 ∈ V
11 vex 3461 . . . . . . 7 𝑦 ∈ V
1210, 11prss 4793 . . . . . 6 ((𝑥𝑌𝑦𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌)
1312anbi1i 624 . . . . 5 (((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦))
1413opabbii 5183 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
159, 14eqtr4i 2760 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
168, 15brab2a 5745 . 2 (𝐴 𝐵 ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
17 df-3an 1088 . 2 ((𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵) ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
1816, 17bitr4i 278 1 (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  wss 3924  {cpr 4601   class class class wbr 5116  {copab 5178  (class class class)co 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-xp 5657  df-iota 6480  df-fv 6535  df-ov 7402
This theorem is referenced by:  gaorber  19276  orbsta  19281  sylow2alem1  19583  sylow2alem2  19584  sylow3lem3  19595  lsmsnorb  33324
  Copyright terms: Public domain W3C validator