MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Visualization version   GIF version

Theorem gapm 19289
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1 𝑋 = (Base‘𝐺)
gapm.2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
Assertion
Ref Expression
gapm (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem gapm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
2 gapm.1 . . . . 5 𝑋 = (Base‘𝐺)
32gaf 19278 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
43ad2antrr 726 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → :(𝑋 × 𝑌)⟶𝑌)
5 simplr 768 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝐴𝑋)
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝑥𝑌)
74, 5, 6fovcdmd 7579 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → (𝐴 𝑥) ∈ 𝑌)
83ad2antrr 726 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
9 gagrp 19275 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 726 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐺 ∈ Grp)
11 simplr 768 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐴𝑋)
12 eqid 2735 . . . . 5 (invg𝐺) = (invg𝐺)
132, 12grpinvcl 18970 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
1410, 11, 13syl2anc 584 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
168, 14, 15fovcdmd 7579 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → (((invg𝐺)‘𝐴) 𝑦) ∈ 𝑌)
17 simpll 766 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ∈ (𝐺 GrpAct 𝑌))
18 simplr 768 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝐴𝑋)
19 simprl 770 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
20 simprr 772 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
212, 12gacan 19288 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2217, 18, 19, 20, 21syl13anc 1374 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2322bicomd 223 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((((invg𝐺)‘𝐴) 𝑦) = 𝑥 ↔ (𝐴 𝑥) = 𝑦))
24 eqcom 2742 . . 3 (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥)
25 eqcom 2742 . . 3 (𝑦 = (𝐴 𝑥) ↔ (𝐴 𝑥) = 𝑦)
2623, 24, 253bitr4g 314 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ 𝑦 = (𝐴 𝑥)))
271, 7, 16, 26f1o2d 7661 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cmpt 5201   × cxp 5652  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  Grpcgrp 18916  invgcminusg 18917   GrpAct cga 19272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-ga 19273
This theorem is referenced by:  galactghm  19385
  Copyright terms: Public domain W3C validator