Step | Hyp | Ref
| Expression |
1 | | gapm.2 |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝑌 ↦ (𝐴 ⊕ 𝑥)) |
2 | | gapm.1 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
3 | 2 | gaf 18816 |
. . . 4
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
4 | 3 | ad2antrr 722 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
5 | | simplr 765 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
6 | | simpr 484 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) |
7 | 4, 5, 6 | fovrnd 7422 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑌) → (𝐴 ⊕ 𝑥) ∈ 𝑌) |
8 | 3 | ad2antrr 722 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
9 | | gagrp 18813 |
. . . . 5
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
10 | 9 | ad2antrr 722 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐺 ∈ Grp) |
11 | | simplr 765 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
12 | | eqid 2738 |
. . . . 5
⊢
(invg‘𝐺) = (invg‘𝐺) |
13 | 2, 12 | grpinvcl 18542 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
14 | 10, 11, 13 | syl2anc 583 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
15 | | simpr 484 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
16 | 8, 14, 15 | fovrnd 7422 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((invg‘𝐺)‘𝐴) ⊕ 𝑦) ∈ 𝑌) |
17 | | simpll 763 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
18 | | simplr 765 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝐴 ∈ 𝑋) |
19 | | simprl 767 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝑥 ∈ 𝑌) |
20 | | simprr 769 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → 𝑦 ∈ 𝑌) |
21 | 2, 12 | gacan 18826 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝐴 ⊕ 𝑥) = 𝑦 ↔ (((invg‘𝐺)‘𝐴) ⊕ 𝑦) = 𝑥)) |
22 | 17, 18, 19, 20, 21 | syl13anc 1370 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((𝐴 ⊕ 𝑥) = 𝑦 ↔ (((invg‘𝐺)‘𝐴) ⊕ 𝑦) = 𝑥)) |
23 | 22 | bicomd 222 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → ((((invg‘𝐺)‘𝐴) ⊕ 𝑦) = 𝑥 ↔ (𝐴 ⊕ 𝑥) = 𝑦)) |
24 | | eqcom 2745 |
. . 3
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) ⊕ 𝑦) ↔ (((invg‘𝐺)‘𝐴) ⊕ 𝑦) = 𝑥) |
25 | | eqcom 2745 |
. . 3
⊢ (𝑦 = (𝐴 ⊕ 𝑥) ↔ (𝐴 ⊕ 𝑥) = 𝑦) |
26 | 23, 24, 25 | 3bitr4g 313 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 = (((invg‘𝐺)‘𝐴) ⊕ 𝑦) ↔ 𝑦 = (𝐴 ⊕ 𝑥))) |
27 | 1, 7, 16, 26 | f1o2d 7501 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑌–1-1-onto→𝑌) |