MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Visualization version   GIF version

Theorem gapm 18827
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1 𝑋 = (Base‘𝐺)
gapm.2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
Assertion
Ref Expression
gapm (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem gapm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
2 gapm.1 . . . . 5 𝑋 = (Base‘𝐺)
32gaf 18816 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
43ad2antrr 722 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → :(𝑋 × 𝑌)⟶𝑌)
5 simplr 765 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝐴𝑋)
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝑥𝑌)
74, 5, 6fovrnd 7422 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → (𝐴 𝑥) ∈ 𝑌)
83ad2antrr 722 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
9 gagrp 18813 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 722 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐺 ∈ Grp)
11 simplr 765 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐴𝑋)
12 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
132, 12grpinvcl 18542 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
1410, 11, 13syl2anc 583 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
168, 14, 15fovrnd 7422 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → (((invg𝐺)‘𝐴) 𝑦) ∈ 𝑌)
17 simpll 763 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ∈ (𝐺 GrpAct 𝑌))
18 simplr 765 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝐴𝑋)
19 simprl 767 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
20 simprr 769 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
212, 12gacan 18826 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2217, 18, 19, 20, 21syl13anc 1370 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2322bicomd 222 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((((invg𝐺)‘𝐴) 𝑦) = 𝑥 ↔ (𝐴 𝑥) = 𝑦))
24 eqcom 2745 . . 3 (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥)
25 eqcom 2745 . . 3 (𝑦 = (𝐴 𝑥) ↔ (𝐴 𝑥) = 𝑦)
2623, 24, 253bitr4g 313 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ 𝑦 = (𝐴 𝑥)))
271, 7, 16, 26f1o2d 7501 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cmpt 5153   × cxp 5578  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  Grpcgrp 18492  invgcminusg 18493   GrpAct cga 18810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ga 18811
This theorem is referenced by:  galactghm  18927
  Copyright terms: Public domain W3C validator