MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Visualization version   GIF version

Theorem gapm 18988
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1 𝑋 = (Base‘𝐺)
gapm.2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
Assertion
Ref Expression
gapm (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem gapm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
2 gapm.1 . . . . 5 𝑋 = (Base‘𝐺)
32gaf 18977 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
43ad2antrr 723 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → :(𝑋 × 𝑌)⟶𝑌)
5 simplr 766 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝐴𝑋)
6 simpr 485 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝑥𝑌)
74, 5, 6fovcdmd 7486 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → (𝐴 𝑥) ∈ 𝑌)
83ad2antrr 723 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
9 gagrp 18974 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 723 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐺 ∈ Grp)
11 simplr 766 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐴𝑋)
12 eqid 2737 . . . . 5 (invg𝐺) = (invg𝐺)
132, 12grpinvcl 18703 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
1410, 11, 13syl2anc 584 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr 485 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
168, 14, 15fovcdmd 7486 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → (((invg𝐺)‘𝐴) 𝑦) ∈ 𝑌)
17 simpll 764 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ∈ (𝐺 GrpAct 𝑌))
18 simplr 766 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝐴𝑋)
19 simprl 768 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
20 simprr 770 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
212, 12gacan 18987 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2217, 18, 19, 20, 21syl13anc 1371 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2322bicomd 222 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((((invg𝐺)‘𝐴) 𝑦) = 𝑥 ↔ (𝐴 𝑥) = 𝑦))
24 eqcom 2744 . . 3 (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥)
25 eqcom 2744 . . 3 (𝑦 = (𝐴 𝑥) ↔ (𝐴 𝑥) = 𝑦)
2623, 24, 253bitr4g 313 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ 𝑦 = (𝐴 𝑥)))
271, 7, 16, 26f1o2d 7565 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  cmpt 5170   × cxp 5606  wf 6462  1-1-ontowf1o 6465  cfv 6466  (class class class)co 7317  Basecbs 16989  Grpcgrp 18653  invgcminusg 18654   GrpAct cga 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-map 8667  df-0g 17229  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-grp 18656  df-minusg 18657  df-ga 18972
This theorem is referenced by:  galactghm  19088
  Copyright terms: Public domain W3C validator