MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gapm Structured version   Visualization version   GIF version

Theorem gapm 19346
Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gapm.1 𝑋 = (Base‘𝐺)
gapm.2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
Assertion
Ref Expression
gapm (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem gapm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gapm.2 . 2 𝐹 = (𝑥𝑌 ↦ (𝐴 𝑥))
2 gapm.1 . . . . 5 𝑋 = (Base‘𝐺)
32gaf 19335 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
43ad2antrr 725 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → :(𝑋 × 𝑌)⟶𝑌)
5 simplr 768 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝐴𝑋)
6 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → 𝑥𝑌)
74, 5, 6fovcdmd 7622 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑥𝑌) → (𝐴 𝑥) ∈ 𝑌)
83ad2antrr 725 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → :(𝑋 × 𝑌)⟶𝑌)
9 gagrp 19332 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 725 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐺 ∈ Grp)
11 simplr 768 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝐴𝑋)
12 eqid 2740 . . . . 5 (invg𝐺) = (invg𝐺)
132, 12grpinvcl 19027 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
1410, 11, 13syl2anc 583 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
168, 14, 15fovcdmd 7622 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → (((invg𝐺)‘𝐴) 𝑦) ∈ 𝑌)
17 simpll 766 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ∈ (𝐺 GrpAct 𝑌))
18 simplr 768 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝐴𝑋)
19 simprl 770 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
20 simprr 772 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
212, 12gacan 19345 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2217, 18, 19, 20, 21syl13anc 1372 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐴 𝑥) = 𝑦 ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥))
2322bicomd 223 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → ((((invg𝐺)‘𝐴) 𝑦) = 𝑥 ↔ (𝐴 𝑥) = 𝑦))
24 eqcom 2747 . . 3 (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ (((invg𝐺)‘𝐴) 𝑦) = 𝑥)
25 eqcom 2747 . . 3 (𝑦 = (𝐴 𝑥) ↔ (𝐴 𝑥) = 𝑦)
2623, 24, 253bitr4g 314 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 = (((invg𝐺)‘𝐴) 𝑦) ↔ 𝑦 = (𝐴 𝑥)))
271, 7, 16, 26f1o2d 7704 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑋) → 𝐹:𝑌1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cmpt 5249   × cxp 5698  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  Grpcgrp 18973  invgcminusg 18974   GrpAct cga 19329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ga 19330
This theorem is referenced by:  galactghm  19446
  Copyright terms: Public domain W3C validator