MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2alem1 Structured version   Visualization version   GIF version

Theorem sylow2alem1 19659
Description: Lemma for sylow2a 19661. An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2a.x 𝑋 = (Base‘𝐺)
sylow2a.m (𝜑 ∈ (𝐺 GrpAct 𝑌))
sylow2a.p (𝜑𝑃 pGrp 𝐺)
sylow2a.f (𝜑𝑋 ∈ Fin)
sylow2a.y (𝜑𝑌 ∈ Fin)
sylow2a.z 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
sylow2a.r = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
sylow2alem1 ((𝜑𝐴𝑍) → [𝐴] = {𝐴})
Distinct variable groups:   ,   𝑔,,𝑢,𝑥,𝑦,𝐴   𝑔,𝐺,𝑥,𝑦   ,𝑔,,𝑢,𝑥,𝑦   𝑔,𝑋,,𝑢,𝑥,𝑦   𝜑,   𝑔,𝑌,,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑔)   𝑃(𝑥,𝑦,𝑢,𝑔,)   (𝑥,𝑦,𝑢,𝑔)   𝐺(𝑢,)   𝑍(𝑥,𝑦,𝑢,𝑔,)

Proof of Theorem sylow2alem1
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑤 ∈ V
2 simpr 484 . . . . . 6 ((𝜑𝐴𝑍) → 𝐴𝑍)
3 elecg 8807 . . . . . 6 ((𝑤 ∈ V ∧ 𝐴𝑍) → (𝑤 ∈ [𝐴] 𝐴 𝑤))
41, 2, 3sylancr 586 . . . . 5 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝐴 𝑤))
5 sylow2a.r . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
65gaorb 19347 . . . . . . 7 (𝐴 𝑤 ↔ (𝐴𝑌𝑤𝑌 ∧ ∃𝑘𝑋 (𝑘 𝐴) = 𝑤))
76simp3bi 1147 . . . . . 6 (𝐴 𝑤 → ∃𝑘𝑋 (𝑘 𝐴) = 𝑤)
8 oveq2 7456 . . . . . . . . . . . . . 14 (𝑢 = 𝐴 → ( 𝑢) = ( 𝐴))
9 id 22 . . . . . . . . . . . . . 14 (𝑢 = 𝐴𝑢 = 𝐴)
108, 9eqeq12d 2756 . . . . . . . . . . . . 13 (𝑢 = 𝐴 → (( 𝑢) = 𝑢 ↔ ( 𝐴) = 𝐴))
1110ralbidv 3184 . . . . . . . . . . . 12 (𝑢 = 𝐴 → (∀𝑋 ( 𝑢) = 𝑢 ↔ ∀𝑋 ( 𝐴) = 𝐴))
12 sylow2a.z . . . . . . . . . . . 12 𝑍 = {𝑢𝑌 ∣ ∀𝑋 ( 𝑢) = 𝑢}
1311, 12elrab2 3711 . . . . . . . . . . 11 (𝐴𝑍 ↔ (𝐴𝑌 ∧ ∀𝑋 ( 𝐴) = 𝐴))
142, 13sylib 218 . . . . . . . . . 10 ((𝜑𝐴𝑍) → (𝐴𝑌 ∧ ∀𝑋 ( 𝐴) = 𝐴))
1514simprd 495 . . . . . . . . 9 ((𝜑𝐴𝑍) → ∀𝑋 ( 𝐴) = 𝐴)
16 oveq1 7455 . . . . . . . . . . 11 ( = 𝑘 → ( 𝐴) = (𝑘 𝐴))
1716eqeq1d 2742 . . . . . . . . . 10 ( = 𝑘 → (( 𝐴) = 𝐴 ↔ (𝑘 𝐴) = 𝐴))
1817rspccva 3634 . . . . . . . . 9 ((∀𝑋 ( 𝐴) = 𝐴𝑘𝑋) → (𝑘 𝐴) = 𝐴)
1915, 18sylan 579 . . . . . . . 8 (((𝜑𝐴𝑍) ∧ 𝑘𝑋) → (𝑘 𝐴) = 𝐴)
20 eqeq1 2744 . . . . . . . 8 ((𝑘 𝐴) = 𝑤 → ((𝑘 𝐴) = 𝐴𝑤 = 𝐴))
2119, 20syl5ibcom 245 . . . . . . 7 (((𝜑𝐴𝑍) ∧ 𝑘𝑋) → ((𝑘 𝐴) = 𝑤𝑤 = 𝐴))
2221rexlimdva 3161 . . . . . 6 ((𝜑𝐴𝑍) → (∃𝑘𝑋 (𝑘 𝐴) = 𝑤𝑤 = 𝐴))
237, 22syl5 34 . . . . 5 ((𝜑𝐴𝑍) → (𝐴 𝑤𝑤 = 𝐴))
244, 23sylbid 240 . . . 4 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝑤 = 𝐴))
25 velsn 4664 . . . 4 (𝑤 ∈ {𝐴} ↔ 𝑤 = 𝐴)
2624, 25imbitrrdi 252 . . 3 ((𝜑𝐴𝑍) → (𝑤 ∈ [𝐴] 𝑤 ∈ {𝐴}))
2726ssrdv 4014 . 2 ((𝜑𝐴𝑍) → [𝐴] ⊆ {𝐴})
28 sylow2a.m . . . . . . 7 (𝜑 ∈ (𝐺 GrpAct 𝑌))
29 sylow2a.x . . . . . . . 8 𝑋 = (Base‘𝐺)
305, 29gaorber 19348 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → Er 𝑌)
3128, 30syl 17 . . . . . 6 (𝜑 Er 𝑌)
3231adantr 480 . . . . 5 ((𝜑𝐴𝑍) → Er 𝑌)
3314simpld 494 . . . . 5 ((𝜑𝐴𝑍) → 𝐴𝑌)
3432, 33erref 8783 . . . 4 ((𝜑𝐴𝑍) → 𝐴 𝐴)
35 elecg 8807 . . . . 5 ((𝐴𝑍𝐴𝑍) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
362, 35sylancom 587 . . . 4 ((𝜑𝐴𝑍) → (𝐴 ∈ [𝐴] 𝐴 𝐴))
3734, 36mpbird 257 . . 3 ((𝜑𝐴𝑍) → 𝐴 ∈ [𝐴] )
3837snssd 4834 . 2 ((𝜑𝐴𝑍) → {𝐴} ⊆ [𝐴] )
3927, 38eqssd 4026 1 ((𝜑𝐴𝑍) → [𝐴] = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  {copab 5228  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  Fincfn 9003  Basecbs 17258   GrpAct cga 19329   pGrp cpgp 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-ec 8765  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ga 19330
This theorem is referenced by:  sylow2alem2  19660  sylow2a  19661
  Copyright terms: Public domain W3C validator