MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem3 Structured version   Visualization version   GIF version

Theorem sylow3lem3 19559
Description: Lemma for sylow3 19563, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem3
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
2 pwfi 9268 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 218 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ Fin)
4 slwsubg 19540 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
5 sylow3.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
65subgss 19059 . . . . . . . 8 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
74, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
84, 7elpwd 4569 . . . . . 6 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
98ssriv 3950 . . . . 5 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
10 ssfi 9137 . . . . 5 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
113, 9, 10sylancl 586 . . . 4 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
12 hashcl 14321 . . . 4 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1413nn0cnd 12505 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ)
15 sylow3.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
16 sylow3lem2.n . . . . . . . 8 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
17 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
1816, 5, 17nmzsubg 19097 . . . . . . 7 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
19 eqid 2729 . . . . . . . 8 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
205, 19eqger 19110 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
2115, 18, 203syl 18 . . . . . 6 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
2221qsss 8749 . . . . 5 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
233, 22ssfid 9212 . . . 4 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
24 hashcl 14321 . . . 4 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2625nn0cnd 12505 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ)
2715, 18syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
28 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
2928subg0cl 19066 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑁)
30 ne0i 4304 . . . . 5 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
3127, 29, 303syl 18 . . . 4 (𝜑𝑁 ≠ ∅)
325subgss 19059 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
3315, 18, 323syl 18 . . . . . 6 (𝜑𝑁𝑋)
341, 33ssfid 9212 . . . . 5 (𝜑𝑁 ∈ Fin)
35 hashnncl 14331 . . . . 5 (𝑁 ∈ Fin → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3634, 35syl 17 . . . 4 (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3731, 36mpbird 257 . . 3 (𝜑 → (♯‘𝑁) ∈ ℕ)
3837nncnd 12202 . 2 (𝜑 → (♯‘𝑁) ∈ ℂ)
3937nnne0d 12236 . 2 (𝜑 → (♯‘𝑁) ≠ 0)
40 sylow3.p . . . . 5 (𝜑𝑃 ∈ ℙ)
41 sylow3lem1.d . . . . 5 = (-g𝐺)
42 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
435, 15, 1, 40, 17, 41, 42sylow3lem1 19557 . . . 4 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
44 sylow3lem2.k . . . 4 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
45 sylow3lem2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
46 eqid 2729 . . . . 5 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
47 eqid 2729 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
485, 45, 46, 47orbsta2 19246 . . . 4 ((( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
4943, 44, 1, 48syl21anc 837 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
505, 19, 27, 1lagsubg2 19126 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
5147, 5gaorber 19240 . . . . . . . 8 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5243, 51syl 17 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5352ecss 8722 . . . . . 6 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺))
5444adantr 480 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
55 simpr 484 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ (𝑃 pSyl 𝐺))
561adantr 480 . . . . . . . . . 10 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
575, 56, 55, 54, 17, 41sylow2 19556 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
58 eqcom 2736 . . . . . . . . . . 11 ((𝑢 𝐾) = = (𝑢 𝐾))
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝑢𝑋)
6054adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
61 mptexg 7195 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
62 rnexg 7878 . . . . . . . . . . . . . 14 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
6360, 61, 623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
64 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
65 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
6665oveq1d 7402 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
6766, 65oveq12d 7405 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
6864, 67mpteq12dv 5194 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
6968rneqd 5902 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7069, 42ovmpoga 7543 . . . . . . . . . . . . 13 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7159, 60, 63, 70syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7271eqeq2d 2740 . . . . . . . . . . 11 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ( = (𝑢 𝐾) ↔ = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7358, 72bitrid 283 . . . . . . . . . 10 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ((𝑢 𝐾) = = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7473rexbidva 3155 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → (∃𝑢𝑋 (𝑢 𝐾) = ↔ ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7557, 74mpbird 257 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 (𝑢 𝐾) = )
7647gaorb 19239 . . . . . . . 8 (𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢𝑋 (𝑢 𝐾) = ))
7754, 55, 75, 76syl3anbrc 1344 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
78 elecg 8715 . . . . . . . 8 (( ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
7955, 54, 78syl2anc 584 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
8077, 79mpbird 257 . . . . . 6 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
8153, 80eqelssd 3968 . . . . 5 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺))
8281fveq2d 6862 . . . 4 (𝜑 → (♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺)))
835, 15, 1, 40, 17, 41, 42, 44, 45, 16sylow3lem2 19558 . . . . 5 (𝜑𝐻 = 𝑁)
8483fveq2d 6862 . . . 4 (𝜑 → (♯‘𝐻) = (♯‘𝑁))
8582, 84oveq12d 7405 . . 3 (𝜑 → ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)))
8649, 50, 853eqtr3rd 2773 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
8714, 26, 38, 39, 86mulcan2ad 11814 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563  {cpr 4591   class class class wbr 5107  {copab 5169  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389   Er wer 8668  [cec 8669   / cqs 8670  Fincfn 8918   · cmul 11073  cn 12186  0cn0 12442  chash 14295  cprime 16641  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052   ~QG cqg 19054   GrpAct cga 19221   pSyl cslw 19457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-ghm 19145  df-ga 19222  df-od 19458  df-pgp 19460  df-slw 19461
This theorem is referenced by:  sylow3lem4  19560
  Copyright terms: Public domain W3C validator