Step | Hyp | Ref
| Expression |
1 | | sylow3.xf |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | pwfi 8923 |
. . . . . 6
⊢ (𝑋 ∈ Fin ↔ 𝒫
𝑋 ∈
Fin) |
3 | 1, 2 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑋 ∈ Fin) |
4 | | slwsubg 19130 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺)) |
5 | | sylow3.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
6 | 5 | subgss 18671 |
. . . . . . . 8
⊢ (𝑥 ∈ (SubGrp‘𝐺) → 𝑥 ⊆ 𝑋) |
7 | 4, 6 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ⊆ 𝑋) |
8 | 4, 7 | elpwd 4538 |
. . . . . 6
⊢ (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋) |
9 | 8 | ssriv 3921 |
. . . . 5
⊢ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋 |
10 | | ssfi 8918 |
. . . . 5
⊢
((𝒫 𝑋 ∈
Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin) |
11 | 3, 9, 10 | sylancl 585 |
. . . 4
⊢ (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin) |
12 | | hashcl 13999 |
. . . 4
⊢ ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈
ℕ0) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈
ℕ0) |
14 | 13 | nn0cnd 12225 |
. 2
⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ) |
15 | | sylow3.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
16 | | sylow3lem2.n |
. . . . . . . 8
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)} |
17 | | sylow3lem1.a |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
18 | 16, 5, 17 | nmzsubg 18708 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
19 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁) |
20 | 5, 19 | eqger 18721 |
. . . . . . 7
⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋) |
21 | 15, 18, 20 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋) |
22 | 21 | qsss 8525 |
. . . . 5
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋) |
23 | 3, 22 | ssfid 8971 |
. . . 4
⊢ (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin) |
24 | | hashcl 13999 |
. . . 4
⊢ ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
25 | 23, 24 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈
ℕ0) |
26 | 25 | nn0cnd 12225 |
. 2
⊢ (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ) |
27 | 15, 18 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
28 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
29 | 28 | subg0cl 18678 |
. . . . 5
⊢ (𝑁 ∈ (SubGrp‘𝐺) →
(0g‘𝐺)
∈ 𝑁) |
30 | | ne0i 4265 |
. . . . 5
⊢
((0g‘𝐺) ∈ 𝑁 → 𝑁 ≠ ∅) |
31 | 27, 29, 30 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑁 ≠ ∅) |
32 | 5 | subgss 18671 |
. . . . . . 7
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝑋) |
33 | 15, 18, 32 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑁 ⊆ 𝑋) |
34 | 1, 33 | ssfid 8971 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
35 | | hashnncl 14009 |
. . . . 5
⊢ (𝑁 ∈ Fin →
((♯‘𝑁) ∈
ℕ ↔ 𝑁 ≠
∅)) |
36 | 34, 35 | syl 17 |
. . . 4
⊢ (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅)) |
37 | 31, 36 | mpbird 256 |
. . 3
⊢ (𝜑 → (♯‘𝑁) ∈
ℕ) |
38 | 37 | nncnd 11919 |
. 2
⊢ (𝜑 → (♯‘𝑁) ∈
ℂ) |
39 | 37 | nnne0d 11953 |
. 2
⊢ (𝜑 → (♯‘𝑁) ≠ 0) |
40 | | sylow3.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
41 | | sylow3lem1.d |
. . . . 5
⊢ − =
(-g‘𝐺) |
42 | | sylow3lem1.m |
. . . . 5
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥))) |
43 | 5, 15, 1, 40, 17, 41, 42 | sylow3lem1 19147 |
. . . 4
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺))) |
44 | | sylow3lem2.k |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
45 | | sylow3lem2.h |
. . . . 5
⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐾) = 𝐾} |
46 | | eqid 2738 |
. . . . 5
⊢ (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻) |
47 | | eqid 2738 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} |
48 | 5, 45, 46, 47 | orbsta2 18835 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}) · (♯‘𝐻))) |
49 | 43, 44, 1, 48 | syl21anc 834 |
. . 3
⊢ (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}) · (♯‘𝐻))) |
50 | 5, 19, 27, 1 | lagsubg2 18732 |
. . 3
⊢ (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))) |
51 | 47, 5 | gaorber 18829 |
. . . . . . . 8
⊢ ( ⊕ ∈
(𝐺 GrpAct (𝑃 pSyl 𝐺)) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺)) |
52 | 43, 51 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺)) |
53 | 52 | ecss 8502 |
. . . . . 6
⊢ (𝜑 → [𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺)) |
54 | 44 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
55 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → ℎ ∈ (𝑃 pSyl 𝐺)) |
56 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin) |
57 | 5, 56, 55, 54, 17, 41 | sylow2 19146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → ∃𝑢 ∈ 𝑋 ℎ = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
58 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ ((𝑢 ⊕ 𝐾) = ℎ ↔ ℎ = (𝑢 ⊕ 𝐾)) |
59 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
60 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺)) |
61 | | mptexg 7079 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
62 | | rnexg 7725 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
63 | 60, 61, 62 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) |
64 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑦 = 𝐾) |
65 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → 𝑥 = 𝑢) |
66 | 65 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧)) |
67 | 66, 65 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ((𝑥 + 𝑧) − 𝑥) = ((𝑢 + 𝑧) − 𝑢)) |
68 | 64, 67 | mpteq12dv 5161 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
69 | 68 | rneqd 5836 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝐾) → ran (𝑧 ∈ 𝑦 ↦ ((𝑥 + 𝑧) − 𝑥)) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
70 | 69, 42 | ovmpoga 7405 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝑋 ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)) ∈ V) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
71 | 59, 60, 63, 70 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → (𝑢 ⊕ 𝐾) = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢))) |
72 | 71 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → (ℎ = (𝑢 ⊕ 𝐾) ↔ ℎ = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
73 | 58, 72 | syl5bb 282 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢 ∈ 𝑋) → ((𝑢 ⊕ 𝐾) = ℎ ↔ ℎ = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
74 | 73 | rexbidva 3224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → (∃𝑢 ∈ 𝑋 (𝑢 ⊕ 𝐾) = ℎ ↔ ∃𝑢 ∈ 𝑋 ℎ = ran (𝑧 ∈ 𝐾 ↦ ((𝑢 + 𝑧) − 𝑢)))) |
75 | 57, 74 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → ∃𝑢 ∈ 𝑋 (𝑢 ⊕ 𝐾) = ℎ) |
76 | 47 | gaorb 18828 |
. . . . . . . 8
⊢ (𝐾{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}ℎ ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ℎ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢 ∈ 𝑋 (𝑢 ⊕ 𝐾) = ℎ)) |
77 | 54, 55, 75, 76 | syl3anbrc 1341 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → 𝐾{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}ℎ) |
78 | | elecg 8499 |
. . . . . . . 8
⊢ ((ℎ ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → (ℎ ∈ [𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ↔ 𝐾{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}ℎ)) |
79 | 55, 54, 78 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → (ℎ ∈ [𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ↔ 𝐾{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}ℎ)) |
80 | 77, 79 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ (𝑃 pSyl 𝐺)) → ℎ ∈ [𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}) |
81 | 53, 80 | eqelssd 3938 |
. . . . 5
⊢ (𝜑 → [𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺)) |
82 | 81 | fveq2d 6760 |
. . . 4
⊢ (𝜑 → (♯‘[𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺))) |
83 | 5, 15, 1, 40, 17, 41, 42, 44, 45, 16 | sylow3lem2 19148 |
. . . . 5
⊢ (𝜑 → 𝐻 = 𝑁) |
84 | 83 | fveq2d 6760 |
. . . 4
⊢ (𝜑 → (♯‘𝐻) = (♯‘𝑁)) |
85 | 82, 84 | oveq12d 7273 |
. . 3
⊢ (𝜑 → ((♯‘[𝐾]{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁))) |
86 | 49, 50, 85 | 3eqtr3rd 2787 |
. 2
⊢ (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁))) |
87 | 14, 26, 38, 39, 86 | mulcan2ad 11541 |
1
⊢ (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁)))) |