MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem3 Structured version   Visualization version   GIF version

Theorem sylow3lem3 19610
Description: Lemma for sylow3 19614, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem3
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
2 pwfi 9329 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 218 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ Fin)
4 slwsubg 19591 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
5 sylow3.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
65subgss 19110 . . . . . . . 8 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
74, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
84, 7elpwd 4581 . . . . . 6 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
98ssriv 3962 . . . . 5 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
10 ssfi 9187 . . . . 5 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
113, 9, 10sylancl 586 . . . 4 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
12 hashcl 14374 . . . 4 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1413nn0cnd 12564 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ)
15 sylow3.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
16 sylow3lem2.n . . . . . . . 8 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
17 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
1816, 5, 17nmzsubg 19148 . . . . . . 7 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
19 eqid 2735 . . . . . . . 8 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
205, 19eqger 19161 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
2115, 18, 203syl 18 . . . . . 6 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
2221qsss 8792 . . . . 5 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
233, 22ssfid 9273 . . . 4 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
24 hashcl 14374 . . . 4 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2625nn0cnd 12564 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ)
2715, 18syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
28 eqid 2735 . . . . . 6 (0g𝐺) = (0g𝐺)
2928subg0cl 19117 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑁)
30 ne0i 4316 . . . . 5 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
3127, 29, 303syl 18 . . . 4 (𝜑𝑁 ≠ ∅)
325subgss 19110 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
3315, 18, 323syl 18 . . . . . 6 (𝜑𝑁𝑋)
341, 33ssfid 9273 . . . . 5 (𝜑𝑁 ∈ Fin)
35 hashnncl 14384 . . . . 5 (𝑁 ∈ Fin → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3634, 35syl 17 . . . 4 (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3731, 36mpbird 257 . . 3 (𝜑 → (♯‘𝑁) ∈ ℕ)
3837nncnd 12256 . 2 (𝜑 → (♯‘𝑁) ∈ ℂ)
3937nnne0d 12290 . 2 (𝜑 → (♯‘𝑁) ≠ 0)
40 sylow3.p . . . . 5 (𝜑𝑃 ∈ ℙ)
41 sylow3lem1.d . . . . 5 = (-g𝐺)
42 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
435, 15, 1, 40, 17, 41, 42sylow3lem1 19608 . . . 4 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
44 sylow3lem2.k . . . 4 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
45 sylow3lem2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
46 eqid 2735 . . . . 5 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
47 eqid 2735 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
485, 45, 46, 47orbsta2 19297 . . . 4 ((( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
4943, 44, 1, 48syl21anc 837 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
505, 19, 27, 1lagsubg2 19177 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
5147, 5gaorber 19291 . . . . . . . 8 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5243, 51syl 17 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5352ecss 8767 . . . . . 6 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺))
5444adantr 480 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
55 simpr 484 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ (𝑃 pSyl 𝐺))
561adantr 480 . . . . . . . . . 10 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
575, 56, 55, 54, 17, 41sylow2 19607 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
58 eqcom 2742 . . . . . . . . . . 11 ((𝑢 𝐾) = = (𝑢 𝐾))
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝑢𝑋)
6054adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
61 mptexg 7213 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
62 rnexg 7898 . . . . . . . . . . . . . 14 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
6360, 61, 623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
64 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
65 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
6665oveq1d 7420 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
6766, 65oveq12d 7423 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
6864, 67mpteq12dv 5207 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
6968rneqd 5918 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7069, 42ovmpoga 7561 . . . . . . . . . . . . 13 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7159, 60, 63, 70syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7271eqeq2d 2746 . . . . . . . . . . 11 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ( = (𝑢 𝐾) ↔ = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7358, 72bitrid 283 . . . . . . . . . 10 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ((𝑢 𝐾) = = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7473rexbidva 3162 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → (∃𝑢𝑋 (𝑢 𝐾) = ↔ ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7557, 74mpbird 257 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 (𝑢 𝐾) = )
7647gaorb 19290 . . . . . . . 8 (𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢𝑋 (𝑢 𝐾) = ))
7754, 55, 75, 76syl3anbrc 1344 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
78 elecg 8763 . . . . . . . 8 (( ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
7955, 54, 78syl2anc 584 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
8077, 79mpbird 257 . . . . . 6 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
8153, 80eqelssd 3980 . . . . 5 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺))
8281fveq2d 6880 . . . 4 (𝜑 → (♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺)))
835, 15, 1, 40, 17, 41, 42, 44, 45, 16sylow3lem2 19609 . . . . 5 (𝜑𝐻 = 𝑁)
8483fveq2d 6880 . . . 4 (𝜑 → (♯‘𝐻) = (♯‘𝑁))
8582, 84oveq12d 7423 . . 3 (𝜑 → ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)))
8649, 50, 853eqtr3rd 2779 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
8714, 26, 38, 39, 86mulcan2ad 11873 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575  {cpr 4603   class class class wbr 5119  {copab 5181  cmpt 5201  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407   Er wer 8716  [cec 8717   / cqs 8718  Fincfn 8959   · cmul 11134  cn 12240  0cn0 12501  chash 14348  cprime 16690  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  -gcsg 18918  SubGrpcsubg 19103   ~QG cqg 19105   GrpAct cga 19272   pSyl cslw 19508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-eqg 19108  df-ghm 19196  df-ga 19273  df-od 19509  df-pgp 19511  df-slw 19512
This theorem is referenced by:  sylow3lem4  19611
  Copyright terms: Public domain W3C validator