MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem3 Structured version   Visualization version   GIF version

Theorem sylow3lem3 19536
Description: Lemma for sylow3 19540, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem3
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
2 pwfi 9198 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 218 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ Fin)
4 slwsubg 19517 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
5 sylow3.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
65subgss 19035 . . . . . . . 8 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
74, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
84, 7elpwd 4551 . . . . . 6 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
98ssriv 3933 . . . . 5 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
10 ssfi 9077 . . . . 5 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
113, 9, 10sylancl 586 . . . 4 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
12 hashcl 14258 . . . 4 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1413nn0cnd 12439 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ)
15 sylow3.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
16 sylow3lem2.n . . . . . . . 8 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
17 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
1816, 5, 17nmzsubg 19072 . . . . . . 7 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
19 eqid 2731 . . . . . . . 8 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
205, 19eqger 19085 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
2115, 18, 203syl 18 . . . . . 6 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
2221qsss 8695 . . . . 5 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
233, 22ssfid 9148 . . . 4 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
24 hashcl 14258 . . . 4 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2625nn0cnd 12439 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ)
2715, 18syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
28 eqid 2731 . . . . . 6 (0g𝐺) = (0g𝐺)
2928subg0cl 19042 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑁)
30 ne0i 4286 . . . . 5 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
3127, 29, 303syl 18 . . . 4 (𝜑𝑁 ≠ ∅)
325subgss 19035 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
3315, 18, 323syl 18 . . . . . 6 (𝜑𝑁𝑋)
341, 33ssfid 9148 . . . . 5 (𝜑𝑁 ∈ Fin)
35 hashnncl 14268 . . . . 5 (𝑁 ∈ Fin → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3634, 35syl 17 . . . 4 (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3731, 36mpbird 257 . . 3 (𝜑 → (♯‘𝑁) ∈ ℕ)
3837nncnd 12136 . 2 (𝜑 → (♯‘𝑁) ∈ ℂ)
3937nnne0d 12170 . 2 (𝜑 → (♯‘𝑁) ≠ 0)
40 sylow3.p . . . . 5 (𝜑𝑃 ∈ ℙ)
41 sylow3lem1.d . . . . 5 = (-g𝐺)
42 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
435, 15, 1, 40, 17, 41, 42sylow3lem1 19534 . . . 4 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
44 sylow3lem2.k . . . 4 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
45 sylow3lem2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
46 eqid 2731 . . . . 5 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
47 eqid 2731 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
485, 45, 46, 47orbsta2 19221 . . . 4 ((( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
4943, 44, 1, 48syl21anc 837 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
505, 19, 27, 1lagsubg2 19101 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
5147, 5gaorber 19215 . . . . . . . 8 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5243, 51syl 17 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5352ecss 8668 . . . . . 6 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺))
5444adantr 480 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
55 simpr 484 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ (𝑃 pSyl 𝐺))
561adantr 480 . . . . . . . . . 10 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
575, 56, 55, 54, 17, 41sylow2 19533 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
58 eqcom 2738 . . . . . . . . . . 11 ((𝑢 𝐾) = = (𝑢 𝐾))
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝑢𝑋)
6054adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
61 mptexg 7150 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
62 rnexg 7827 . . . . . . . . . . . . . 14 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
6360, 61, 623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
64 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
65 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
6665oveq1d 7356 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
6766, 65oveq12d 7359 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
6864, 67mpteq12dv 5173 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
6968rneqd 5873 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7069, 42ovmpoga 7495 . . . . . . . . . . . . 13 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7159, 60, 63, 70syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7271eqeq2d 2742 . . . . . . . . . . 11 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ( = (𝑢 𝐾) ↔ = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7358, 72bitrid 283 . . . . . . . . . 10 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ((𝑢 𝐾) = = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7473rexbidva 3154 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → (∃𝑢𝑋 (𝑢 𝐾) = ↔ ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7557, 74mpbird 257 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 (𝑢 𝐾) = )
7647gaorb 19214 . . . . . . . 8 (𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢𝑋 (𝑢 𝐾) = ))
7754, 55, 75, 76syl3anbrc 1344 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
78 elecg 8661 . . . . . . . 8 (( ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
7955, 54, 78syl2anc 584 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
8077, 79mpbird 257 . . . . . 6 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
8153, 80eqelssd 3951 . . . . 5 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺))
8281fveq2d 6821 . . . 4 (𝜑 → (♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺)))
835, 15, 1, 40, 17, 41, 42, 44, 45, 16sylow3lem2 19535 . . . . 5 (𝜑𝐻 = 𝑁)
8483fveq2d 6821 . . . 4 (𝜑 → (♯‘𝐻) = (♯‘𝑁))
8582, 84oveq12d 7359 . . 3 (𝜑 → ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)))
8649, 50, 853eqtr3rd 2775 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
8714, 26, 38, 39, 86mulcan2ad 11748 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4278  𝒫 cpw 4545  {cpr 4573   class class class wbr 5086  {copab 5148  cmpt 5167  ran crn 5612  cfv 6476  (class class class)co 7341  cmpo 7343   Er wer 8614  [cec 8615   / cqs 8616  Fincfn 8864   · cmul 11006  cn 12120  0cn0 12376  chash 14232  cprime 16577  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Grpcgrp 18841  -gcsg 18843  SubGrpcsubg 19028   ~QG cqg 19030   GrpAct cga 19196   pSyl cslw 19434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-dvds 16159  df-gcd 16401  df-prm 16578  df-pc 16744  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-eqg 19033  df-ghm 19120  df-ga 19197  df-od 19435  df-pgp 19437  df-slw 19438
This theorem is referenced by:  sylow3lem4  19537
  Copyright terms: Public domain W3C validator