Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem3 Structured version   Visualization version   GIF version

Theorem sylow3lem3 18515
 Description: Lemma for sylow3 18519, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem3
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
2 pwfi 8614 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 210 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ Fin)
4 slwsubg 18496 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
5 sylow3.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
65subgss 18064 . . . . . . . 8 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
74, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
84, 7elpwd 4431 . . . . . 6 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
98ssriv 3863 . . . . 5 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
10 ssfi 8533 . . . . 5 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
113, 9, 10sylancl 577 . . . 4 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
12 hashcl 13532 . . . 4 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1413nn0cnd 11769 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ)
15 sylow3.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
16 sylow3lem2.n . . . . . . . 8 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
17 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
1816, 5, 17nmzsubg 18104 . . . . . . 7 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
19 eqid 2779 . . . . . . . 8 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
205, 19eqger 18113 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
2115, 18, 203syl 18 . . . . . 6 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
2221qsss 8158 . . . . 5 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
233, 22ssfid 8536 . . . 4 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
24 hashcl 13532 . . . 4 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2625nn0cnd 11769 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ)
2715, 18syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
28 eqid 2779 . . . . . 6 (0g𝐺) = (0g𝐺)
2928subg0cl 18071 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑁)
30 ne0i 4187 . . . . 5 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
3127, 29, 303syl 18 . . . 4 (𝜑𝑁 ≠ ∅)
325subgss 18064 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
3315, 18, 323syl 18 . . . . . 6 (𝜑𝑁𝑋)
341, 33ssfid 8536 . . . . 5 (𝜑𝑁 ∈ Fin)
35 hashnncl 13542 . . . . 5 (𝑁 ∈ Fin → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3634, 35syl 17 . . . 4 (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3731, 36mpbird 249 . . 3 (𝜑 → (♯‘𝑁) ∈ ℕ)
3837nncnd 11457 . 2 (𝜑 → (♯‘𝑁) ∈ ℂ)
3937nnne0d 11490 . 2 (𝜑 → (♯‘𝑁) ≠ 0)
40 sylow3.p . . . . 5 (𝜑𝑃 ∈ ℙ)
41 sylow3lem1.d . . . . 5 = (-g𝐺)
42 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
435, 15, 1, 40, 17, 41, 42sylow3lem1 18513 . . . 4 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
44 sylow3lem2.k . . . 4 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
45 sylow3lem2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
46 eqid 2779 . . . . 5 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
47 eqid 2779 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
485, 45, 46, 47orbsta2 18215 . . . 4 ((( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
4943, 44, 1, 48syl21anc 825 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
505, 19, 27, 1lagsubg2 18124 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
5147, 5gaorber 18209 . . . . . . . 8 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5243, 51syl 17 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5352ecss 8135 . . . . . 6 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺))
5444adantr 473 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
55 simpr 477 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ (𝑃 pSyl 𝐺))
561adantr 473 . . . . . . . . . 10 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
575, 56, 55, 54, 17, 41sylow2 18512 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
58 eqcom 2786 . . . . . . . . . . 11 ((𝑢 𝐾) = = (𝑢 𝐾))
59 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝑢𝑋)
6054adantr 473 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
61 mptexg 6810 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
62 rnexg 7429 . . . . . . . . . . . . . 14 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
6360, 61, 623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
64 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
65 simpl 475 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
6665oveq1d 6991 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
6766, 65oveq12d 6994 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
6864, 67mpteq12dv 5012 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
6968rneqd 5651 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7069, 42ovmpoga 7120 . . . . . . . . . . . . 13 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7159, 60, 63, 70syl3anc 1351 . . . . . . . . . . . 12 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7271eqeq2d 2789 . . . . . . . . . . 11 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ( = (𝑢 𝐾) ↔ = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7358, 72syl5bb 275 . . . . . . . . . 10 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ((𝑢 𝐾) = = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7473rexbidva 3242 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → (∃𝑢𝑋 (𝑢 𝐾) = ↔ ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7557, 74mpbird 249 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 (𝑢 𝐾) = )
7647gaorb 18208 . . . . . . . 8 (𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢𝑋 (𝑢 𝐾) = ))
7754, 55, 75, 76syl3anbrc 1323 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
78 elecg 8132 . . . . . . . 8 (( ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
7955, 54, 78syl2anc 576 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
8077, 79mpbird 249 . . . . . 6 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
8153, 80eqelssd 3879 . . . . 5 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺))
8281fveq2d 6503 . . . 4 (𝜑 → (♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺)))
835, 15, 1, 40, 17, 41, 42, 44, 45, 16sylow3lem2 18514 . . . . 5 (𝜑𝐻 = 𝑁)
8483fveq2d 6503 . . . 4 (𝜑 → (♯‘𝐻) = (♯‘𝑁))
8582, 84oveq12d 6994 . . 3 (𝜑 → ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)))
8649, 50, 853eqtr3rd 2824 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
8714, 26, 38, 39, 86mulcan2ad 11077 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   = wceq 1507   ∈ wcel 2050   ≠ wne 2968  ∀wral 3089  ∃wrex 3090  {crab 3093  Vcvv 3416   ⊆ wss 3830  ∅c0 4179  𝒫 cpw 4422  {cpr 4443   class class class wbr 4929  {copab 4991   ↦ cmpt 5008  ran crn 5408  ‘cfv 6188  (class class class)co 6976   ∈ cmpo 6978   Er wer 8086  [cec 8087   / cqs 8088  Fincfn 8306   · cmul 10340  ℕcn 11439  ℕ0cn0 11707  ♯chash 13505  ℙcprime 15871  Basecbs 16339  +gcplusg 16421  0gc0g 16569  Grpcgrp 17891  -gcsg 17893  SubGrpcsubg 18057   ~QG cqg 18059   GrpAct cga 18190   pSyl cslw 18417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-omul 7910  df-er 8089  df-ec 8091  df-qs 8095  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-acn 9165  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-fac 13449  df-bc 13478  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-dvds 15468  df-gcd 15704  df-prm 15872  df-pc 16030  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-grp 17894  df-minusg 17895  df-sbg 17896  df-mulg 18012  df-subg 18060  df-eqg 18062  df-ghm 18127  df-ga 18191  df-od 18418  df-pgp 18420  df-slw 18421 This theorem is referenced by:  sylow3lem4  18516
 Copyright terms: Public domain W3C validator