MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem3 Structured version   Visualization version   GIF version

Theorem sylow3lem3 19647
Description: Lemma for sylow3 19651, first part. The number of Sylow subgroups is the same as the index (number of cosets) of the normalizer of the Sylow subgroup 𝐾. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem1.a + = (+g𝐺)
sylow3lem1.d = (-g𝐺)
sylow3lem1.m = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem2.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem2.h 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
sylow3lem2.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
Assertion
Ref Expression
sylow3lem3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,   𝑢, ,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑢,𝐾,𝑥,𝑦,𝑧   𝑢,𝑁,𝑧   𝑢,𝑋,𝑥,𝑦,𝑧   𝑢,𝐺,𝑥,𝑦,𝑧   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢, + ,𝑥,𝑦,𝑧   𝑢,𝑃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑢)   𝑁(𝑥,𝑦)

Proof of Theorem sylow3lem3
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
2 pwfi 9357 . . . . . 6 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 218 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ Fin)
4 slwsubg 19628 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
5 sylow3.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
65subgss 19145 . . . . . . . 8 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
74, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
84, 7elpwd 4606 . . . . . 6 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
98ssriv 3987 . . . . 5 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
10 ssfi 9213 . . . . 5 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
113, 9, 10sylancl 586 . . . 4 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
12 hashcl 14395 . . . 4 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
1413nn0cnd 12589 . 2 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℂ)
15 sylow3.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
16 sylow3lem2.n . . . . . . . 8 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝐾 ↔ (𝑦 + 𝑥) ∈ 𝐾)}
17 sylow3lem1.a . . . . . . . 8 + = (+g𝐺)
1816, 5, 17nmzsubg 19183 . . . . . . 7 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
19 eqid 2737 . . . . . . . 8 (𝐺 ~QG 𝑁) = (𝐺 ~QG 𝑁)
205, 19eqger 19196 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑁) Er 𝑋)
2115, 18, 203syl 18 . . . . . 6 (𝜑 → (𝐺 ~QG 𝑁) Er 𝑋)
2221qsss 8818 . . . . 5 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ⊆ 𝒫 𝑋)
233, 22ssfid 9301 . . . 4 (𝜑 → (𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin)
24 hashcl 14395 . . . 4 ((𝑋 / (𝐺 ~QG 𝑁)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2523, 24syl 17 . . 3 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℕ0)
2625nn0cnd 12589 . 2 (𝜑 → (♯‘(𝑋 / (𝐺 ~QG 𝑁))) ∈ ℂ)
2715, 18syl 17 . . . . 5 (𝜑𝑁 ∈ (SubGrp‘𝐺))
28 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
2928subg0cl 19152 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑁)
30 ne0i 4341 . . . . 5 ((0g𝐺) ∈ 𝑁𝑁 ≠ ∅)
3127, 29, 303syl 18 . . . 4 (𝜑𝑁 ≠ ∅)
325subgss 19145 . . . . . . 7 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
3315, 18, 323syl 18 . . . . . 6 (𝜑𝑁𝑋)
341, 33ssfid 9301 . . . . 5 (𝜑𝑁 ∈ Fin)
35 hashnncl 14405 . . . . 5 (𝑁 ∈ Fin → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3634, 35syl 17 . . . 4 (𝜑 → ((♯‘𝑁) ∈ ℕ ↔ 𝑁 ≠ ∅))
3731, 36mpbird 257 . . 3 (𝜑 → (♯‘𝑁) ∈ ℕ)
3837nncnd 12282 . 2 (𝜑 → (♯‘𝑁) ∈ ℂ)
3937nnne0d 12316 . 2 (𝜑 → (♯‘𝑁) ≠ 0)
40 sylow3.p . . . . 5 (𝜑𝑃 ∈ ℙ)
41 sylow3lem1.d . . . . 5 = (-g𝐺)
42 sylow3lem1.m . . . . 5 = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
435, 15, 1, 40, 17, 41, 42sylow3lem1 19645 . . . 4 (𝜑 ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)))
44 sylow3lem2.k . . . 4 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
45 sylow3lem2.h . . . . 5 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐾) = 𝐾}
46 eqid 2737 . . . . 5 (𝐺 ~QG 𝐻) = (𝐺 ~QG 𝐻)
47 eqid 2737 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
485, 45, 46, 47orbsta2 19332 . . . 4 ((( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
4943, 44, 1, 48syl21anc 838 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)))
505, 19, 27, 1lagsubg2 19212 . . 3 (𝜑 → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
5147, 5gaorber 19326 . . . . . . . 8 ( ∈ (𝐺 GrpAct (𝑃 pSyl 𝐺)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5243, 51syl 17 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} Er (𝑃 pSyl 𝐺))
5352ecss 8793 . . . . . 6 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ⊆ (𝑃 pSyl 𝐺))
5444adantr 480 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾 ∈ (𝑃 pSyl 𝐺))
55 simpr 484 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ (𝑃 pSyl 𝐺))
561adantr 480 . . . . . . . . . 10 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
575, 56, 55, 54, 17, 41sylow2 19644 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
58 eqcom 2744 . . . . . . . . . . 11 ((𝑢 𝐾) = = (𝑢 𝐾))
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝑢𝑋)
6054adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → 𝐾 ∈ (𝑃 pSyl 𝐺))
61 mptexg 7241 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑃 pSyl 𝐺) → (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
62 rnexg 7924 . . . . . . . . . . . . . 14 ((𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
6360, 61, 623syl 18 . . . . . . . . . . . . 13 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V)
64 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑦 = 𝐾)
65 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑢𝑦 = 𝐾) → 𝑥 = 𝑢)
6665oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑥 + 𝑧) = (𝑢 + 𝑧))
6766, 65oveq12d 7449 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑢𝑦 = 𝐾) → ((𝑥 + 𝑧) 𝑥) = ((𝑢 + 𝑧) 𝑢))
6864, 67mpteq12dv 5233 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑢𝑦 = 𝐾) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
6968rneqd 5949 . . . . . . . . . . . . . 14 ((𝑥 = 𝑢𝑦 = 𝐾) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7069, 42ovmpoga 7587 . . . . . . . . . . . . 13 ((𝑢𝑋𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)) ∈ V) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7159, 60, 63, 70syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → (𝑢 𝐾) = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢)))
7271eqeq2d 2748 . . . . . . . . . . 11 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ( = (𝑢 𝐾) ↔ = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7358, 72bitrid 283 . . . . . . . . . 10 (((𝜑 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑢𝑋) → ((𝑢 𝐾) = = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7473rexbidva 3177 . . . . . . . . 9 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → (∃𝑢𝑋 (𝑢 𝐾) = ↔ ∃𝑢𝑋 = ran (𝑧𝐾 ↦ ((𝑢 + 𝑧) 𝑢))))
7557, 74mpbird 257 . . . . . . . 8 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∃𝑢𝑋 (𝑢 𝐾) = )
7647gaorb 19325 . . . . . . . 8 (𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ (𝐾 ∈ (𝑃 pSyl 𝐺) ∧ ∈ (𝑃 pSyl 𝐺) ∧ ∃𝑢𝑋 (𝑢 𝐾) = ))
7754, 55, 75, 76syl3anbrc 1344 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
78 elecg 8789 . . . . . . . 8 (( ∈ (𝑃 pSyl 𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
7955, 54, 78syl2anc 584 . . . . . . 7 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ( ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} ↔ 𝐾{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}))
8077, 79mpbird 257 . . . . . 6 ((𝜑 ∈ (𝑃 pSyl 𝐺)) → ∈ [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)})
8153, 80eqelssd 4005 . . . . 5 (𝜑 → [𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = (𝑃 pSyl 𝐺))
8281fveq2d 6910 . . . 4 (𝜑 → (♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) = (♯‘(𝑃 pSyl 𝐺)))
835, 15, 1, 40, 17, 41, 42, 44, 45, 16sylow3lem2 19646 . . . . 5 (𝜑𝐻 = 𝑁)
8483fveq2d 6910 . . . 4 (𝜑 → (♯‘𝐻) = (♯‘𝑁))
8582, 84oveq12d 7449 . . 3 (𝜑 → ((♯‘[𝐾]{⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (𝑃 pSyl 𝐺) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}) · (♯‘𝐻)) = ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)))
8649, 50, 853eqtr3rd 2786 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) · (♯‘𝑁)) = ((♯‘(𝑋 / (𝐺 ~QG 𝑁))) · (♯‘𝑁)))
8714, 26, 38, 39, 86mulcan2ad 11899 1 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) = (♯‘(𝑋 / (𝐺 ~QG 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600  {cpr 4628   class class class wbr 5143  {copab 5205  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433   Er wer 8742  [cec 8743   / cqs 8744  Fincfn 8985   · cmul 11160  cn 12266  0cn0 12526  chash 14369  cprime 16708  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138   ~QG cqg 19140   GrpAct cga 19307   pSyl cslw 19545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-ghm 19231  df-ga 19308  df-od 19546  df-pgp 19548  df-slw 19549
This theorem is referenced by:  sylow3lem4  19648
  Copyright terms: Public domain W3C validator