MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hldir Structured version   Visualization version   GIF version

Theorem hldir 30844
Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hldi.1 𝑋 = (BaseSet‘𝑈)
hldi.2 𝐺 = ( +𝑣𝑈)
hldi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
hldir ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))

Proof of Theorem hldir
StepHypRef Expression
1 hlnv 30827 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hldi.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hldi.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hldi.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
52, 3, 4nvdir 30567 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
61, 5sylan 580 1 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073   + caddc 11078  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  CHilOLDchlo 30821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-1st 7971  df-2nd 7972  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-cbn 30799  df-hlo 30822
This theorem is referenced by:  axhvdistr2-zf  30927
  Copyright terms: Public domain W3C validator