MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hldir Structured version   Visualization version   GIF version

Theorem hldir 30909
Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hldi.1 𝑋 = (BaseSet‘𝑈)
hldi.2 𝐺 = ( +𝑣𝑈)
hldi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
hldir ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))

Proof of Theorem hldir
StepHypRef Expression
1 hlnv 30892 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hldi.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hldi.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hldi.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
52, 3, 4nvdir 30632 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
61, 5sylan 580 1 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11015   + caddc 11020  NrmCVeccnv 30585   +𝑣 cpv 30586  BaseSetcba 30587   ·𝑠OLD cns 30588  CHilOLDchlo 30886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-1st 7930  df-2nd 7931  df-vc 30560  df-nv 30593  df-va 30596  df-ba 30597  df-sm 30598  df-0v 30599  df-nmcv 30601  df-cbn 30864  df-hlo 30887
This theorem is referenced by:  axhvdistr2-zf  30992
  Copyright terms: Public domain W3C validator