MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlass Structured version   Visualization version   GIF version

Theorem hlass 29395
Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hladdf.1 𝑋 = (BaseSet‘𝑈)
hladdf.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
hlass ((𝑈 ∈ CHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))

Proof of Theorem hlass
StepHypRef Expression
1 hlnv 29385 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hladdf.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hladdf.2 . . 3 𝐺 = ( +𝑣𝑈)
42, 3nvass 29116 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
51, 4sylan 580 1 ((𝑈 ∈ CHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6465  (class class class)co 7316  NrmCVeccnv 29078   +𝑣 cpv 29079  BaseSetcba 29080  CHilOLDchlo 29379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-1st 7877  df-2nd 7878  df-grpo 28987  df-ablo 29039  df-vc 29053  df-nv 29086  df-va 29089  df-ba 29090  df-sm 29091  df-0v 29092  df-nmcv 29094  df-cbn 29357  df-hlo 29380
This theorem is referenced by:  axhvass-zf  29478
  Copyright terms: Public domain W3C validator