Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlass | Structured version Visualization version GIF version |
Description: Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hladdf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
hladdf.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
Ref | Expression |
---|---|
hlass | ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnv 29385 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
2 | hladdf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hladdf.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | 2, 3 | nvass 29116 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) |
5 | 1, 4 | sylan 580 | 1 ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7316 NrmCVeccnv 29078 +𝑣 cpv 29079 BaseSetcba 29080 CHilOLDchlo 29379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-1st 7877 df-2nd 7878 df-grpo 28987 df-ablo 29039 df-vc 29053 df-nv 29086 df-va 29089 df-ba 29090 df-sm 29091 df-0v 29092 df-nmcv 29094 df-cbn 29357 df-hlo 29380 |
This theorem is referenced by: axhvass-zf 29478 |
Copyright terms: Public domain | W3C validator |