MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmulass Structured version   Visualization version   GIF version

Theorem hlmulass 30926
Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlmulf.1 𝑋 = (BaseSet‘𝑈)
hlmulf.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
hlmulass ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))

Proof of Theorem hlmulass
StepHypRef Expression
1 hlnv 30911 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hlmulf.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hlmulf.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvsass 30648 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
51, 4sylan 580 1 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cc 11154   · cmul 11161  NrmCVeccnv 30604  BaseSetcba 30606   ·𝑠OLD cns 30607  CHilOLDchlo 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-1st 8015  df-2nd 8016  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-nmcv 30620  df-cbn 30883  df-hlo 30906
This theorem is referenced by:  axhvmulass-zf  31009
  Copyright terms: Public domain W3C validator