![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlmulass | Structured version Visualization version GIF version |
Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlmulf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
hlmulf.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
hlmulass | ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnv 30688 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
2 | hlmulf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hlmulf.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvsass 30425 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 · cmul 11135 NrmCVeccnv 30381 BaseSetcba 30383 ·𝑠OLD cns 30384 CHilOLDchlo 30682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-1st 7987 df-2nd 7988 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-nmcv 30397 df-cbn 30660 df-hlo 30683 |
This theorem is referenced by: axhvmulass-zf 30786 |
Copyright terms: Public domain | W3C validator |