| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlmulf | Structured version Visualization version GIF version | ||
| Description: Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlmulf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| hlmulf.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| Ref | Expression |
|---|---|
| hlmulf | ⊢ (𝑈 ∈ CHilOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlnv 30826 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
| 2 | hlmulf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hlmulf.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 4 | 2, 3 | nvsf 30554 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑆:(ℂ × 𝑋)⟶𝑋) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5638 ⟶wf 6509 ‘cfv 6513 ℂcc 11072 NrmCVeccnv 30519 BaseSetcba 30521 ·𝑠OLD cns 30522 CHilOLDchlo 30820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-1st 7970 df-2nd 7971 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-nmcv 30535 df-cbn 30798 df-hlo 30821 |
| This theorem is referenced by: axhfvmul-zf 30922 |
| Copyright terms: Public domain | W3C validator |