MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hladdid Structured version   Visualization version   GIF version

Theorem hladdid 30731
Description: Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hladdid.1 𝑋 = (BaseSetβ€˜π‘ˆ)
hladdid.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
hladdid.5 𝑍 = (0vecβ€˜π‘ˆ)
Assertion
Ref Expression
hladdid ((π‘ˆ ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺𝑍) = 𝐴)

Proof of Theorem hladdid
StepHypRef Expression
1 hlnv 30719 . 2 (π‘ˆ ∈ CHilOLD β†’ π‘ˆ ∈ NrmCVec)
2 hladdid.1 . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
3 hladdid.2 . . 3 𝐺 = ( +𝑣 β€˜π‘ˆ)
4 hladdid.5 . . 3 𝑍 = (0vecβ€˜π‘ˆ)
52, 3, 4nv0rid 30463 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺𝑍) = 𝐴)
61, 5sylan 578 1 ((π‘ˆ ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺𝑍) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  β€˜cfv 6551  (class class class)co 7424  NrmCVeccnv 30412   +𝑣 cpv 30413  BaseSetcba 30414  0veccn0v 30416  CHilOLDchlo 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-1st 7997  df-2nd 7998  df-grpo 30321  df-gid 30322  df-ablo 30373  df-vc 30387  df-nv 30420  df-va 30423  df-ba 30424  df-sm 30425  df-0v 30426  df-nmcv 30428  df-cbn 30691  df-hlo 30714
This theorem is referenced by:  axhvaddid-zf  30814
  Copyright terms: Public domain W3C validator