MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hladdid Structured version   Visualization version   GIF version

Theorem hladdid 30839
Description: Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hladdid.1 𝑋 = (BaseSet‘𝑈)
hladdid.2 𝐺 = ( +𝑣𝑈)
hladdid.5 𝑍 = (0vec𝑈)
Assertion
Ref Expression
hladdid ((𝑈 ∈ CHilOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)

Proof of Theorem hladdid
StepHypRef Expression
1 hlnv 30827 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hladdid.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hladdid.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hladdid.5 . . 3 𝑍 = (0vec𝑈)
52, 3, 4nv0rid 30571 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
61, 5sylan 580 1 ((𝑈 ∈ CHilOLD𝐴𝑋) → (𝐴𝐺𝑍) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6519  (class class class)co 7394  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522  0veccn0v 30524  CHilOLDchlo 30821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-1st 7977  df-2nd 7978  df-grpo 30429  df-gid 30430  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-cbn 30799  df-hlo 30822
This theorem is referenced by:  axhvaddid-zf  30922
  Copyright terms: Public domain W3C validator