MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlmulid Structured version   Visualization version   GIF version

Theorem hlmulid 30153
Description: Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlmulf.1 𝑋 = (BaseSetβ€˜π‘ˆ)
hlmulf.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
Assertion
Ref Expression
hlmulid ((π‘ˆ ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)

Proof of Theorem hlmulid
StepHypRef Expression
1 hlnv 30139 . 2 (π‘ˆ ∈ CHilOLD β†’ π‘ˆ ∈ NrmCVec)
2 hlmulf.1 . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
3 hlmulf.4 . . 3 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
42, 3nvsid 29875 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)
51, 4sylan 580 1 ((π‘ˆ ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  1c1 11110  NrmCVeccnv 29832  BaseSetcba 29834   ·𝑠OLD cns 29835  CHilOLDchlo 30133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-1st 7974  df-2nd 7975  df-vc 29807  df-nv 29840  df-va 29843  df-ba 29844  df-sm 29845  df-0v 29846  df-nmcv 29848  df-cbn 30111  df-hlo 30134
This theorem is referenced by:  axhvmulid-zf  30236
  Copyright terms: Public domain W3C validator