![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hl0cl | Structured version Visualization version GIF version |
Description: The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hl0cl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
hl0cl.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
hl0cl | ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnv 30122 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
2 | hl0cl.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hl0cl.5 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 29865 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 NrmCVeccnv 29815 BaseSetcba 29817 0veccn0v 29819 CHilOLDchlo 30116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-1st 7970 df-2nd 7971 df-grpo 29724 df-gid 29725 df-ablo 29776 df-vc 29790 df-nv 29823 df-va 29826 df-ba 29827 df-sm 29828 df-0v 29829 df-nmcv 29831 df-cbn 30094 df-hlo 30117 |
This theorem is referenced by: axhv0cl-zf 30216 |
Copyright terms: Public domain | W3C validator |