Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hl0cl | Structured version Visualization version GIF version |
Description: The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hl0cl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
hl0cl.5 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
hl0cl | ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlnv 29154 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | |
2 | hl0cl.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hl0cl.5 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 28897 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 NrmCVeccnv 28847 BaseSetcba 28849 0veccn0v 28851 CHilOLDchlo 29148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 df-cbn 29126 df-hlo 29149 |
This theorem is referenced by: axhv0cl-zf 29248 |
Copyright terms: Public domain | W3C validator |