MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hldi Structured version   Visualization version   GIF version

Theorem hldi 28683
Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hldi.1 𝑋 = (BaseSet‘𝑈)
hldi.2 𝐺 = ( +𝑣𝑈)
hldi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
hldi ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))

Proof of Theorem hldi
StepHypRef Expression
1 hlnv 28667 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ NrmCVec)
2 hldi.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hldi.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hldi.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
52, 3, 4nvdi 28406 . 2 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
61, 5sylan 582 1 ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  cc 10534  NrmCVeccnv 28360   +𝑣 cpv 28361  BaseSetcba 28362   ·𝑠OLD cns 28363  CHilOLDchlo 28661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-1st 7688  df-2nd 7689  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-nmcv 28376  df-cbn 28639  df-hlo 28662
This theorem is referenced by:  axhvdistr1-zf  28766
  Copyright terms: Public domain W3C validator