| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnlej2 | Structured version Visualization version GIF version | ||
| Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012.) |
| Ref | Expression |
|---|---|
| atnlej.l | ⊢ ≤ = (le‘𝐾) |
| atnlej.j | ⊢ ∨ = (join‘𝐾) |
| atnlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnlej2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39472 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝐾 ∈ Lat) |
| 3 | simp21 1207 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ∈ 𝐴) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | atnlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 4, 5 | atbase 39398 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ∈ (Base‘𝐾)) |
| 8 | simp22 1208 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ 𝐴) | |
| 9 | 4, 5 | atbase 39398 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑄 ∈ (Base‘𝐾)) |
| 11 | simp23 1209 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑅 ∈ 𝐴) | |
| 12 | 4, 5 | atbase 39398 | . . 3 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑅 ∈ (Base‘𝐾)) |
| 14 | simp3 1138 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) | |
| 15 | atnlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 16 | atnlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 17 | 4, 15, 16 | latnlej1r 18364 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑅) |
| 18 | 2, 7, 10, 13, 14, 17 | syl131anc 1385 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑅)) → 𝑃 ≠ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 Latclat 18337 Atomscatm 39372 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 |
| This theorem is referenced by: lplnri2N 39663 lplnri3N 39664 lplnexllnN 39673 dalem41 39822 paddasslem2 39930 4atexlemc 40178 |
| Copyright terms: Public domain | W3C validator |