| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodseqi | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hodseq.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hodseq.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodseqi | ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (𝑇 −op 𝑆) = (𝑇 −op 𝑆) | |
| 2 | hodseq.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | hodseq.2 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 2, 3 | hosubcli 31704 | . . 3 ⊢ (𝑇 −op 𝑆): ℋ⟶ ℋ |
| 5 | 2, 3, 4 | hodsi 31710 | . 2 ⊢ ((𝑇 −op 𝑆) = (𝑇 −op 𝑆) ↔ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇) |
| 6 | 1, 5 | mpbi 230 | 1 ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⟶wf 6509 (class class class)co 7389 ℋchba 30854 +op chos 30873 −op chod 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-hilex 30934 ax-hfvadd 30935 ax-hvcom 30936 ax-hvass 30937 ax-hv0cl 30938 ax-hvaddid 30939 ax-hfvmul 30940 ax-hvmulid 30941 ax-hvdistr2 30944 ax-hvmul0 30945 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-neg 11414 df-hvsub 30906 df-hosum 31665 df-hodif 31667 |
| This theorem is referenced by: ho0subi 31730 hosd1i 31757 |
| Copyright terms: Public domain | W3C validator |