| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodseqi | Structured version Visualization version GIF version | ||
| Description: Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hodseq.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hodseq.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hodseqi | ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (𝑇 −op 𝑆) = (𝑇 −op 𝑆) | |
| 2 | hodseq.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | hodseq.2 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ | |
| 4 | 2, 3 | hosubcli 31744 | . . 3 ⊢ (𝑇 −op 𝑆): ℋ⟶ ℋ |
| 5 | 2, 3, 4 | hodsi 31750 | . 2 ⊢ ((𝑇 −op 𝑆) = (𝑇 −op 𝑆) ↔ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇) |
| 6 | 1, 5 | mpbi 230 | 1 ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⟶wf 6477 (class class class)co 7346 ℋchba 30894 +op chos 30913 −op chod 30915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvdistr2 30984 ax-hvmul0 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-sub 11343 df-neg 11344 df-hvsub 30946 df-hosum 31705 df-hodif 31707 |
| This theorem is referenced by: ho0subi 31770 hosd1i 31797 |
| Copyright terms: Public domain | W3C validator |