HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmdmadj Structured version   Visualization version   GIF version

Theorem hmdmadj 31949
Description: Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmdmadj (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)

Proof of Theorem hmdmadj
StepHypRef Expression
1 hmopf 31883 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hon0 31802 . . . 4 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
31, 2syl 17 . . 3 (𝑇 ∈ HrmOp → ¬ 𝑇 = ∅)
4 hmopadj 31948 . . . 4 (𝑇 ∈ HrmOp → (adj𝑇) = 𝑇)
54eqeq1d 2738 . . 3 (𝑇 ∈ HrmOp → ((adj𝑇) = ∅ ↔ 𝑇 = ∅))
63, 5mtbird 325 . 2 (𝑇 ∈ HrmOp → ¬ (adj𝑇) = ∅)
7 ndmfv 6939 . 2 𝑇 ∈ dom adj → (adj𝑇) = ∅)
86, 7nsyl2 141 1 (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  c0 4332  dom cdm 5683  wf 6555  cfv 6559  chba 30928  HrmOpcho 30959  adjcado 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-hilex 31008  ax-hfvadd 31009  ax-hvcom 31010  ax-hvass 31011  ax-hv0cl 31012  ax-hvaddid 31013  ax-hfvmul 31014  ax-hvmulid 31015  ax-hvdistr2 31018  ax-hvmul0 31019  ax-hfi 31088  ax-his1 31091  ax-his2 31092  ax-his3 31093  ax-his4 31094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-po 5590  df-so 5591  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-er 8741  df-map 8864  df-en 8982  df-dom 8983  df-sdom 8984  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-2 12325  df-cj 15134  df-re 15135  df-im 15136  df-hvsub 30980  df-hmop 31853  df-adjh 31858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator