HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmdmadj Structured version   Visualization version   GIF version

Theorem hmdmadj 31950
Description: Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmdmadj (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)

Proof of Theorem hmdmadj
StepHypRef Expression
1 hmopf 31884 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hon0 31803 . . . 4 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
31, 2syl 17 . . 3 (𝑇 ∈ HrmOp → ¬ 𝑇 = ∅)
4 hmopadj 31949 . . . 4 (𝑇 ∈ HrmOp → (adj𝑇) = 𝑇)
54eqeq1d 2735 . . 3 (𝑇 ∈ HrmOp → ((adj𝑇) = ∅ ↔ 𝑇 = ∅))
63, 5mtbird 325 . 2 (𝑇 ∈ HrmOp → ¬ (adj𝑇) = ∅)
7 ndmfv 6936 . 2 𝑇 ∈ dom adj → (adj𝑇) = ∅)
86, 7nsyl2 141 1 (𝑇 ∈ HrmOp → 𝑇 ∈ dom adj)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1535  wcel 2104  c0 4339  dom cdm 5683  wf 6554  cfv 6558  chba 30929  HrmOpcho 30960  adjcado 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-hilex 31009  ax-hfvadd 31010  ax-hvcom 31011  ax-hvass 31012  ax-hv0cl 31013  ax-hvaddid 31014  ax-hfvmul 31015  ax-hvmulid 31016  ax-hvdistr2 31019  ax-hvmul0 31020  ax-hfi 31089  ax-his1 31092  ax-his2 31093  ax-his3 31094  ax-his4 31095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-er 8738  df-map 8861  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-div 11912  df-2 12320  df-cj 15124  df-re 15125  df-im 15126  df-hvsub 30981  df-hmop 31854  df-adjh 31859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator