MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgmulg Structured version   Visualization version   GIF version

Theorem subgmulg 19079
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t · = (.g𝐺)
subgmulg.h 𝐻 = (𝐺s 𝑆)
subgmulg.t = (.g𝐻)
Assertion
Ref Expression
subgmulg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6 𝐻 = (𝐺s 𝑆)
2 eqid 2730 . . . . . 6 (0g𝐺) = (0g𝐺)
31, 2subg0 19071 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
433ad2ant1 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
54ifeq1d 4511 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
6 eqid 2730 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
71, 6ressplusg 17261 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
873ad2ant1 1133 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
98seqeq2d 13980 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
109adantr 480 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1110fveq1d 6863 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
1211ifeq1d 4511 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))))
13 simp2 1137 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413zred 12645 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℝ)
15 0re 11183 . . . . . . . . . . . 12 0 ∈ ℝ
16 axlttri 11252 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 < 0 ↔ ¬ (𝑁 = 0 ∨ 0 < 𝑁)))
1714, 15, 16sylancl 586 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ ¬ (𝑁 = 0 ∨ 0 < 𝑁)))
18 ioran 985 . . . . . . . . . . 11 (¬ (𝑁 = 0 ∨ 0 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁))
1917, 18bitrdi 287 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)))
2019biimpar 477 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0)
21 simpl1 1192 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺))
2213adantr 480 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
2322znegcld 12647 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ)
2414lt0neg1d 11754 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ 0 < -𝑁))
2524biimpa 476 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 0 < -𝑁)
26 elnnz 12546 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
2723, 25, 26sylanbrc 583 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ)
28 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
2928subgss 19066 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
30293ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
31 simp3 1138 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
3230, 31sseldd 3950 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
3332adantr 480 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺))
34 subgmulgcl.t . . . . . . . . . . . . 13 · = (.g𝐺)
35 eqid 2730 . . . . . . . . . . . . 13 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
3628, 6, 34, 35mulgnn 19014 . . . . . . . . . . . 12 ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
3727, 33, 36syl2anc 584 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
3831adantr 480 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋𝑆)
3934subgmulgcl 19078 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
4021, 23, 38, 39syl3anc 1373 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆)
4137, 40eqeltrrd 2830 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆)
42 eqid 2730 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
43 eqid 2730 . . . . . . . . . . 11 (invg𝐻) = (invg𝐻)
441, 42, 43subginv 19072 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4521, 41, 44syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4620, 45syldan 591 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
479adantr 480 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
4847fveq1d 6863 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))
4948fveq2d 6865 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5046, 49eqtrd 2765 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5150anassrs 467 . . . . . 6 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5251ifeq2da 4524 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
5312, 52eqtrd 2765 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
5453ifeq2da 4524 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
555, 54eqtrd 2765 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
5628, 6, 2, 42, 34, 35mulgval 19010 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
5713, 32, 56syl2anc 584 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
581subgbas 19069 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
59583ad2ant1 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 = (Base‘𝐻))
6031, 59eleqtrd 2831 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
61 eqid 2730 . . . 4 (Base‘𝐻) = (Base‘𝐻)
62 eqid 2730 . . . 4 (+g𝐻) = (+g𝐻)
63 eqid 2730 . . . 4 (0g𝐻) = (0g𝐻)
64 subgmulg.t . . . 4 = (.g𝐻)
65 eqid 2730 . . . 4 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
6661, 62, 63, 43, 64, 65mulgval 19010 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6713, 60, 66syl2anc 584 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6855, 57, 673eqtr4d 2775 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   < clt 11215  -cneg 11413  cn 12193  cz 12536  seqcseq 13973  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409  invgcminusg 18873  .gcmg 19006  SubGrpcsubg 19059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062
This theorem is referenced by:  cycsubgcyg  19838  ablfac2  20028  zringmulg  21373  zringcyg  21386  remulg  21523  subgmulgcld  32991  rezh  33966
  Copyright terms: Public domain W3C validator