MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgmulg Structured version   Visualization version   GIF version

Theorem subgmulg 18223
Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
subgmulgcl.t · = (.g𝐺)
subgmulg.h 𝐻 = (𝐺s 𝑆)
subgmulg.t = (.g𝐻)
Assertion
Ref Expression
subgmulg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))

Proof of Theorem subgmulg
StepHypRef Expression
1 subgmulg.h . . . . . 6 𝐻 = (𝐺s 𝑆)
2 eqid 2826 . . . . . 6 (0g𝐺) = (0g𝐺)
31, 2subg0 18215 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
433ad2ant1 1127 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
54ifeq1d 4488 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
6 eqid 2826 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
71, 6ressplusg 16602 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
873ad2ant1 1127 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
98seqeq2d 13366 . . . . . . . 8 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
109adantr 481 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1110fveq1d 6669 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁))
1211ifeq1d 4488 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))))
13 simp2 1131 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413zred 12076 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℝ)
15 0re 10632 . . . . . . . . . . . 12 0 ∈ ℝ
16 axlttri 10701 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 < 0 ↔ ¬ (𝑁 = 0 ∨ 0 < 𝑁)))
1714, 15, 16sylancl 586 . . . . . . . . . . 11 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ ¬ (𝑁 = 0 ∨ 0 < 𝑁)))
18 ioran 979 . . . . . . . . . . 11 (¬ (𝑁 = 0 ∨ 0 < 𝑁) ↔ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁))
1917, 18syl6bb 288 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)))
2019biimpar 478 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → 𝑁 < 0)
21 simpl1 1185 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑆 ∈ (SubGrp‘𝐺))
2213adantr 481 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑁 ∈ ℤ)
2322znegcld 12078 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℤ)
2414lt0neg1d 11198 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 < 0 ↔ 0 < -𝑁))
2524biimpa 477 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 0 < -𝑁)
26 elnnz 11980 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 < -𝑁))
2723, 25, 26sylanbrc 583 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → -𝑁 ∈ ℕ)
28 eqid 2826 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
2928subgss 18210 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
30293ad2ant1 1127 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 ⊆ (Base‘𝐺))
31 simp3 1132 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
3230, 31sseldd 3972 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
3332adantr 481 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋 ∈ (Base‘𝐺))
34 subgmulgcl.t . . . . . . . . . . . . 13 · = (.g𝐺)
35 eqid 2826 . . . . . . . . . . . . 13 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
3628, 6, 34, 35mulgnn 18162 . . . . . . . . . . . 12 ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
3727, 33, 36syl2anc 584 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))
3831adantr 481 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → 𝑋𝑆)
3934subgmulgcl 18222 . . . . . . . . . . . 12 ((𝑆 ∈ (SubGrp‘𝐺) ∧ -𝑁 ∈ ℤ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
4021, 23, 38, 39syl3anc 1365 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (-𝑁 · 𝑋) ∈ 𝑆)
4137, 40eqeltrrd 2919 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆)
42 eqid 2826 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
43 eqid 2826 . . . . . . . . . . 11 (invg𝐻) = (invg𝐻)
441, 42, 43subginv 18216 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) ∈ 𝑆) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4521, 41, 44syl2anc 584 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 < 0) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
4620, 45syldan 591 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))
479adantr 481 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
4847fveq1d 6669 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁) = (seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))
4948fveq2d 6671 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐻)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5046, 49eqtrd 2861 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (¬ 𝑁 = 0 ∧ ¬ 0 < 𝑁)) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5150anassrs 468 . . . . . 6 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)) = ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))
5251ifeq2da 4501 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
5312, 52eqtrd 2861 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁))) = if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁))))
5453ifeq2da 4501 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
555, 54eqtrd 2861 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
5628, 6, 2, 42, 34, 35mulgval 18158 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
5713, 32, 56syl2anc 584 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁)))))
581subgbas 18213 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
59583ad2ant1 1127 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆 = (Base‘𝐻))
6031, 59eleqtrd 2920 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
61 eqid 2826 . . . 4 (Base‘𝐻) = (Base‘𝐻)
62 eqid 2826 . . . 4 (+g𝐻) = (+g𝐻)
63 eqid 2826 . . . 4 (0g𝐻) = (0g𝐻)
64 subgmulg.t . . . 4 = (.g𝐻)
65 eqid 2826 . . . 4 seq1((+g𝐻), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
6661, 62, 63, 43, 64, 65mulgval 18158 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6713, 60, 66syl2anc 584 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 𝑋) = if(𝑁 = 0, (0g𝐻), if(0 < 𝑁, (seq1((+g𝐻), (ℕ × {𝑋}))‘𝑁), ((invg𝐻)‘(seq1((+g𝐻), (ℕ × {𝑋}))‘-𝑁)))))
6855, 57, 673eqtr4d 2871 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  wss 3940  ifcif 4470  {csn 4564   class class class wbr 5063   × cxp 5552  cfv 6352  (class class class)co 7148  cr 10525  0cc0 10526  1c1 10527   < clt 10664  -cneg 10860  cn 11627  cz 11970  seqcseq 13359  Basecbs 16473  s cress 16474  +gcplusg 16555  0gc0g 16703  invgcminusg 18034  .gcmg 18154  SubGrpcsubg 18203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-seq 13360  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-0g 16705  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-grp 18036  df-minusg 18037  df-mulg 18155  df-subg 18206
This theorem is referenced by:  cycsubgcyg  18941  ablfac2  19131  zringmulg  20544  zringcyg  20557  remulg  20670  rezh  31101
  Copyright terms: Public domain W3C validator