MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvmarrepid Structured version   Visualization version   GIF version

Theorem 1marepvmarrepid 22488
Description: Replacing the ith row by 0's and the ith component of a (column) vector at the diagonal position for the identity matrix with the ith column replaced by the vector results in the matrix itself. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
marepvmarrep1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
marepvmarrep1.o 1 = (1r‘(𝑁 Mat 𝑅))
marepvmarrep1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvmarrepid (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)

Proof of Theorem 1marepvmarrepid
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvmarrep1.x . . . 4 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
2 eqid 2731 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2731 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 marepvmarrep1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
5 marepvmarrep1.o . . . . . 6 1 = (1r‘(𝑁 Mat 𝑅))
62, 3, 4, 5ma1repvcl 22483 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
76ancom2s 650 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
81, 7eqeltrid 2835 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
9 elmapi 8773 . . . . . . 7 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
10 ffvelcdm 7014 . . . . . . . 8 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
1110ex 412 . . . . . . 7 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
129, 11syl 17 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1312, 4eleq2s 2849 . . . . 5 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1413impcom 407 . . . 4 ((𝐼𝑁𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
1514adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑍𝐼) ∈ (Base‘𝑅))
16 simpl 482 . . . 4 ((𝐼𝑁𝑍𝑉) → 𝐼𝑁)
1716adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
18 eqid 2731 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
19 eqid 2731 . . . 4 (0g𝑅) = (0g𝑅)
202, 3, 18, 19marrepval 22475 . . 3 (((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝑍𝐼) ∈ (Base‘𝑅)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
218, 15, 17, 17, 20syl22anc 838 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
22 iftrue 4481 . . . . . 6 (𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
2322adantr 480 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
24 iftrue 4481 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
2524adantr 480 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
26 iftrue 4481 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝑖))
27 fveq2 6822 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑍𝑖) = (𝑍𝐼))
2827adantr 480 . . . . . . . 8 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑍𝑖) = (𝑍𝐼))
2926, 28sylan9eq 2786 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝐼))
3025, 29eqtr4d 2769 . . . . . 6 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
31 eqid 2731 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
32 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
3332adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑁 ∈ Fin)
34333ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
35 simpl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
3635adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑅 ∈ Ring)
37363ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
39 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
402, 31, 19, 34, 37, 38, 39, 5mat1ov 22361 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4140adantl 481 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4241adantl 481 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
43 eqtr2 2752 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝐼 = 𝑗)
4443eqcomd 2737 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝑗 = 𝐼)
4544ex 412 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝑗 = 𝐼))
4645con3d 152 . . . . . . . . . . 11 (𝑖 = 𝐼 → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4746adantr 480 . . . . . . . . . 10 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4847impcom 407 . . . . . . . . 9 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → ¬ 𝑖 = 𝑗)
49 iffalse 4484 . . . . . . . . 9 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5048, 49syl 17 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5142, 50eqtrd 2766 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = (0g𝑅))
52 iffalse 4484 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
5352adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
54 iffalse 4484 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5554adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5651, 53, 553eqtr4rd 2777 . . . . . 6 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5730, 56pm2.61ian 811 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5823, 57eqtrd 2766 . . . 4 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
59 iffalse 4484 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
6059adantr 480 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
612, 3, 5mat1bas 22362 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
6261adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
63 simpr 484 . . . . . . . . . . 11 ((𝐼𝑁𝑍𝑉) → 𝑍𝑉)
6463adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
6562, 64, 173jca 1128 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
66653ad2ant1 1133 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
67 3simpc 1150 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
6837, 66, 673jca 1128 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
6968adantl 481 . . . . . 6 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
702, 3, 4, 5, 19, 1ma1repveval 22484 . . . . . 6 ((𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7169, 70syl 17 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7234ad2antlr 727 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑁 ∈ Fin)
7337ad2antlr 727 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑅 ∈ Ring)
7438ad2antlr 727 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑖𝑁)
7539ad2antlr 727 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑗𝑁)
762, 31, 19, 72, 73, 74, 75, 5mat1ov 22361 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
77 equcom 2019 . . . . . . . . 9 (𝑖 = 𝑗𝑗 = 𝑖)
7877a1i 11 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 = 𝑗𝑗 = 𝑖))
7978ifbid 4499 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
8076, 79eqtr2d 2767 . . . . . 6 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (𝑖 1 𝑗))
8180ifeq2da 4508 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8260, 71, 813eqtrd 2770 . . . 4 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8358, 82pm2.61ian 811 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8483mpoeq3dva 7423 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
85 eqid 2731 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
862, 3, 85, 4marepvval 22480 . . . 4 (( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
8765, 86syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
881, 87eqtr2id 2779 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))) = 𝑋)
8921, 84, 883eqtrd 2770 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  ifcif 4475  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  Basecbs 17117  0gc0g 17340  1rcur 20097  Ringcrg 20149   Mat cmat 22320   matRRep cmarrep 22469   matRepV cmatrepV 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20483  df-lmod 20793  df-lss 20863  df-sra 21105  df-rgmod 21106  df-dsmm 21667  df-frlm 21682  df-mamu 22304  df-mat 22321  df-marrep 22471  df-marepv 22472
This theorem is referenced by:  cramerimplem1  22596
  Copyright terms: Public domain W3C validator