MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvmarrepid Structured version   Visualization version   GIF version

Theorem 1marepvmarrepid 22602
Description: Replacing the ith row by 0's and the ith component of a (column) vector at the diagonal position for the identity matrix with the ith column replaced by the vector results in the matrix itself. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
marepvmarrep1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
marepvmarrep1.o 1 = (1r‘(𝑁 Mat 𝑅))
marepvmarrep1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvmarrepid (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)

Proof of Theorem 1marepvmarrepid
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvmarrep1.x . . . 4 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
2 eqid 2740 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2740 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 marepvmarrep1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
5 marepvmarrep1.o . . . . . 6 1 = (1r‘(𝑁 Mat 𝑅))
62, 3, 4, 5ma1repvcl 22597 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
76ancom2s 649 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
81, 7eqeltrid 2848 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
9 elmapi 8907 . . . . . . 7 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
10 ffvelcdm 7115 . . . . . . . 8 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
1110ex 412 . . . . . . 7 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
129, 11syl 17 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1312, 4eleq2s 2862 . . . . 5 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1413impcom 407 . . . 4 ((𝐼𝑁𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
1514adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑍𝐼) ∈ (Base‘𝑅))
16 simpl 482 . . . 4 ((𝐼𝑁𝑍𝑉) → 𝐼𝑁)
1716adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
18 eqid 2740 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
19 eqid 2740 . . . 4 (0g𝑅) = (0g𝑅)
202, 3, 18, 19marrepval 22589 . . 3 (((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝑍𝐼) ∈ (Base‘𝑅)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
218, 15, 17, 17, 20syl22anc 838 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
22 iftrue 4554 . . . . . 6 (𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
2322adantr 480 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
24 iftrue 4554 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
2524adantr 480 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
26 iftrue 4554 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝑖))
27 fveq2 6920 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑍𝑖) = (𝑍𝐼))
2827adantr 480 . . . . . . . 8 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑍𝑖) = (𝑍𝐼))
2926, 28sylan9eq 2800 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝐼))
3025, 29eqtr4d 2783 . . . . . 6 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
31 eqid 2740 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
32 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
3332adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑁 ∈ Fin)
34333ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
35 simpl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
3635adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑅 ∈ Ring)
37363ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
39 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
402, 31, 19, 34, 37, 38, 39, 5mat1ov 22475 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4140adantl 481 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4241adantl 481 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
43 eqtr2 2764 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝐼 = 𝑗)
4443eqcomd 2746 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝑗 = 𝐼)
4544ex 412 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝑗 = 𝐼))
4645con3d 152 . . . . . . . . . . 11 (𝑖 = 𝐼 → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4746adantr 480 . . . . . . . . . 10 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4847impcom 407 . . . . . . . . 9 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → ¬ 𝑖 = 𝑗)
49 iffalse 4557 . . . . . . . . 9 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5048, 49syl 17 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5142, 50eqtrd 2780 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = (0g𝑅))
52 iffalse 4557 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
5352adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
54 iffalse 4557 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5554adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5651, 53, 553eqtr4rd 2791 . . . . . 6 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5730, 56pm2.61ian 811 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5823, 57eqtrd 2780 . . . 4 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
59 iffalse 4557 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
6059adantr 480 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
612, 3, 5mat1bas 22476 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
6261adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
63 simpr 484 . . . . . . . . . . 11 ((𝐼𝑁𝑍𝑉) → 𝑍𝑉)
6463adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
6562, 64, 173jca 1128 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
66653ad2ant1 1133 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
67 3simpc 1150 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
6837, 66, 673jca 1128 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
6968adantl 481 . . . . . 6 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
702, 3, 4, 5, 19, 1ma1repveval 22598 . . . . . 6 ((𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7169, 70syl 17 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7234ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑁 ∈ Fin)
7337ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑅 ∈ Ring)
7438ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑖𝑁)
7539ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑗𝑁)
762, 31, 19, 72, 73, 74, 75, 5mat1ov 22475 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
77 equcom 2017 . . . . . . . . 9 (𝑖 = 𝑗𝑗 = 𝑖)
7877a1i 11 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 = 𝑗𝑗 = 𝑖))
7978ifbid 4571 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
8076, 79eqtr2d 2781 . . . . . 6 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (𝑖 1 𝑗))
8180ifeq2da 4580 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8260, 71, 813eqtrd 2784 . . . 4 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8358, 82pm2.61ian 811 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8483mpoeq3dva 7527 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
85 eqid 2740 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
862, 3, 85, 4marepvval 22594 . . . 4 (( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
8765, 86syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
881, 87eqtr2id 2793 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))) = 𝑋)
8921, 84, 883eqtrd 2784 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260   Mat cmat 22432   matRRep cmarrep 22583   matRepV cmatrepV 22584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mamu 22416  df-mat 22433  df-marrep 22585  df-marepv 22586
This theorem is referenced by:  cramerimplem1  22710
  Copyright terms: Public domain W3C validator