Step | Hyp | Ref
| Expression |
1 | | marepvmarrep1.x |
. . . 4
⊢ 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) |
2 | | eqid 2738 |
. . . . . 6
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
4 | | marepvmarrep1.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
5 | | marepvmarrep1.o |
. . . . . 6
⊢ 1 =
(1r‘(𝑁 Mat
𝑅)) |
6 | 2, 3, 4, 5 | ma1repvcl 21627 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
7 | 6 | ancom2s 646 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅))) |
8 | 1, 7 | eqeltrid 2843 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅))) |
9 | | elmapi 8595 |
. . . . . . 7
⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅)) |
10 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼 ∈ 𝑁) → (𝑍‘𝐼) ∈ (Base‘𝑅)) |
11 | 10 | ex 412 |
. . . . . . 7
⊢ (𝑍:𝑁⟶(Base‘𝑅) → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
12 | 9, 11 | syl 17 |
. . . . . 6
⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
13 | 12, 4 | eleq2s 2857 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (𝐼 ∈ 𝑁 → (𝑍‘𝐼) ∈ (Base‘𝑅))) |
14 | 13 | impcom 407 |
. . . 4
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉) → (𝑍‘𝐼) ∈ (Base‘𝑅)) |
15 | 14 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝑍‘𝐼) ∈ (Base‘𝑅)) |
16 | | simpl 482 |
. . . 4
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉) → 𝐼 ∈ 𝑁) |
17 | 16 | adantl 481 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝐼 ∈ 𝑁) |
18 | | eqid 2738 |
. . . 4
⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) |
19 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
20 | 2, 3, 18, 19 | marrepval 21619 |
. . 3
⊢ (((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝑍‘𝐼) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)))) |
21 | 8, 15, 17, 17, 20 | syl22anc 835 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)))) |
22 | | iftrue 4462 |
. . . . . 6
⊢ (𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅))) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅))) |
24 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = (𝑍‘𝐼)) |
25 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = (𝑍‘𝐼)) |
26 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = (𝑍‘𝑖)) |
27 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑖 = 𝐼 → (𝑍‘𝑖) = (𝑍‘𝐼)) |
28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑍‘𝑖) = (𝑍‘𝐼)) |
29 | 26, 28 | sylan9eq 2799 |
. . . . . . 7
⊢ ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = (𝑍‘𝐼)) |
30 | 25, 29 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
31 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1r‘𝑅) = (1r‘𝑅) |
32 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) |
33 | 32 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑁 ∈ Fin) |
34 | 33 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
35 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring) |
36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑅 ∈ Ring) |
37 | 36 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
38 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
39 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
40 | 2, 31, 19, 34, 37, 38, 39, 5 | mat1ov 21505 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
41 | 40 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
42 | 41 | adantl 481 |
. . . . . . . 8
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
43 | | eqtr2 2762 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑖 = 𝑗) → 𝐼 = 𝑗) |
44 | 43 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑖 = 𝑗) → 𝑗 = 𝐼) |
45 | 44 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝐼 → (𝑖 = 𝑗 → 𝑗 = 𝐼)) |
46 | 45 | con3d 152 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝐼 → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗)) |
47 | 46 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗)) |
48 | 47 | impcom 407 |
. . . . . . . . 9
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → ¬ 𝑖 = 𝑗) |
49 | | iffalse 4465 |
. . . . . . . . 9
⊢ (¬
𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
50 | 48, 49 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
51 | 42, 50 | eqtrd 2778 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → (𝑖 1 𝑗) = (0g‘𝑅)) |
52 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗)) |
53 | 52 | adantr 480 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗)) |
54 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = (0g‘𝑅)) |
55 | 54 | adantr 480 |
. . . . . . 7
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = (0g‘𝑅)) |
56 | 51, 53, 55 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((¬
𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
57 | 30, 56 | pm2.61ian 808 |
. . . . 5
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
58 | 23, 57 | eqtrd 2778 |
. . . 4
⊢ ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
59 | | iffalse 4465 |
. . . . . 6
⊢ (¬
𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗)) |
60 | 59 | adantr 480 |
. . . . 5
⊢ ((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗)) |
61 | 2, 3, 5 | mat1bas 21506 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈
(Base‘(𝑁 Mat 𝑅))) |
62 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅))) |
63 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
64 | 63 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) |
65 | 62, 64, 17 | 3jca 1126 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) |
66 | 65 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁)) |
67 | | 3simpc 1148 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
68 | 37, 66, 67 | 3jca 1126 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
69 | 68 | adantl 481 |
. . . . . 6
⊢ ((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁))) |
70 | 2, 3, 4, 5, 19, 1 | ma1repveval 21628 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈
(Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍‘𝑖), if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
71 | 69, 70 | syl 17 |
. . . . 5
⊢ ((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍‘𝑖), if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
72 | 34 | ad2antlr 723 |
. . . . . . . 8
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑁 ∈ Fin) |
73 | 37 | ad2antlr 723 |
. . . . . . . 8
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑅 ∈ Ring) |
74 | 38 | ad2antlr 723 |
. . . . . . . 8
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑖 ∈ 𝑁) |
75 | 39 | ad2antlr 723 |
. . . . . . . 8
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑗 ∈ 𝑁) |
76 | 2, 31, 19, 72, 73, 74, 75, 5 | mat1ov 21505 |
. . . . . . 7
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅))) |
77 | | equcom 2022 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 ↔ 𝑗 = 𝑖) |
78 | 77 | a1i 11 |
. . . . . . . 8
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 = 𝑗 ↔ 𝑗 = 𝑖)) |
79 | 78 | ifbid 4479 |
. . . . . . 7
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑖 = 𝑗, (1r‘𝑅), (0g‘𝑅)) = if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) |
80 | 76, 79 | eqtr2d 2779 |
. . . . . 6
⊢ (((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (𝑖 1 𝑗)) |
81 | 80 | ifeq2da 4488 |
. . . . 5
⊢ ((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑗 = 𝐼, (𝑍‘𝑖), if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
82 | 60, 71, 81 | 3eqtrd 2782 |
. . . 4
⊢ ((¬
𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
83 | 58, 82 | pm2.61ian 808 |
. . 3
⊢ ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) |
84 | 83 | mpoeq3dva 7330 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍‘𝐼), (0g‘𝑅)), (𝑖𝑋𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)))) |
85 | | eqid 2738 |
. . . . 5
⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) |
86 | 2, 3, 85, 4 | marepvval 21624 |
. . . 4
⊢ (( 1 ∈
(Base‘(𝑁 Mat 𝑅)) ∧ 𝑍 ∈ 𝑉 ∧ 𝐼 ∈ 𝑁) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)))) |
87 | 65, 86 | syl 17 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗)))) |
88 | 1, 87 | eqtr2id 2792 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐼, (𝑍‘𝑖), (𝑖 1 𝑗))) = 𝑋) |
89 | 21, 84, 88 | 3eqtrd 2782 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝑍 ∈ 𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍‘𝐼))𝐼) = 𝑋) |