MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvmarrepid Structured version   Visualization version   GIF version

Theorem 1marepvmarrepid 21922
Description: Replacing the ith row by 0's and the ith component of a (column) vector at the diagonal position for the identity matrix with the ith column replaced by the vector results in the matrix itself. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
marepvmarrep1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
marepvmarrep1.o 1 = (1r‘(𝑁 Mat 𝑅))
marepvmarrep1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvmarrepid (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)

Proof of Theorem 1marepvmarrepid
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvmarrep1.x . . . 4 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
2 eqid 2736 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2736 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 marepvmarrep1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
5 marepvmarrep1.o . . . . . 6 1 = (1r‘(𝑁 Mat 𝑅))
62, 3, 4, 5ma1repvcl 21917 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
76ancom2s 648 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
81, 7eqeltrid 2842 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
9 elmapi 8786 . . . . . . 7 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
10 ffvelcdm 7032 . . . . . . . 8 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
1110ex 413 . . . . . . 7 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
129, 11syl 17 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1312, 4eleq2s 2856 . . . . 5 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1413impcom 408 . . . 4 ((𝐼𝑁𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
1514adantl 482 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑍𝐼) ∈ (Base‘𝑅))
16 simpl 483 . . . 4 ((𝐼𝑁𝑍𝑉) → 𝐼𝑁)
1716adantl 482 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
18 eqid 2736 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
19 eqid 2736 . . . 4 (0g𝑅) = (0g𝑅)
202, 3, 18, 19marrepval 21909 . . 3 (((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝑍𝐼) ∈ (Base‘𝑅)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
218, 15, 17, 17, 20syl22anc 837 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
22 iftrue 4492 . . . . . 6 (𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
2322adantr 481 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
24 iftrue 4492 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
2524adantr 481 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
26 iftrue 4492 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝑖))
27 fveq2 6842 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑍𝑖) = (𝑍𝐼))
2827adantr 481 . . . . . . . 8 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑍𝑖) = (𝑍𝐼))
2926, 28sylan9eq 2796 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝐼))
3025, 29eqtr4d 2779 . . . . . 6 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
31 eqid 2736 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
32 simpr 485 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
3332adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑁 ∈ Fin)
34333ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
35 simpl 483 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
3635adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑅 ∈ Ring)
37363ad2ant1 1133 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
38 simp2 1137 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
39 simp3 1138 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
402, 31, 19, 34, 37, 38, 39, 5mat1ov 21795 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4140adantl 482 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4241adantl 482 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
43 eqtr2 2760 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝐼 = 𝑗)
4443eqcomd 2742 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝑗 = 𝐼)
4544ex 413 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝑗 = 𝐼))
4645con3d 152 . . . . . . . . . . 11 (𝑖 = 𝐼 → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4746adantr 481 . . . . . . . . . 10 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4847impcom 408 . . . . . . . . 9 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → ¬ 𝑖 = 𝑗)
49 iffalse 4495 . . . . . . . . 9 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5048, 49syl 17 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5142, 50eqtrd 2776 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = (0g𝑅))
52 iffalse 4495 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
5352adantr 481 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
54 iffalse 4495 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5554adantr 481 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5651, 53, 553eqtr4rd 2787 . . . . . 6 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5730, 56pm2.61ian 810 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5823, 57eqtrd 2776 . . . 4 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
59 iffalse 4495 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
6059adantr 481 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
612, 3, 5mat1bas 21796 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
6261adantr 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
63 simpr 485 . . . . . . . . . . 11 ((𝐼𝑁𝑍𝑉) → 𝑍𝑉)
6463adantl 482 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
6562, 64, 173jca 1128 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
66653ad2ant1 1133 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
67 3simpc 1150 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
6837, 66, 673jca 1128 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
6968adantl 482 . . . . . 6 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
702, 3, 4, 5, 19, 1ma1repveval 21918 . . . . . 6 ((𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7169, 70syl 17 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7234ad2antlr 725 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑁 ∈ Fin)
7337ad2antlr 725 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑅 ∈ Ring)
7438ad2antlr 725 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑖𝑁)
7539ad2antlr 725 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑗𝑁)
762, 31, 19, 72, 73, 74, 75, 5mat1ov 21795 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
77 equcom 2021 . . . . . . . . 9 (𝑖 = 𝑗𝑗 = 𝑖)
7877a1i 11 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 = 𝑗𝑗 = 𝑖))
7978ifbid 4509 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
8076, 79eqtr2d 2777 . . . . . 6 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (𝑖 1 𝑗))
8180ifeq2da 4518 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8260, 71, 813eqtrd 2780 . . . 4 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8358, 82pm2.61ian 810 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8483mpoeq3dva 7433 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
85 eqid 2736 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
862, 3, 85, 4marepvval 21914 . . . 4 (( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
8765, 86syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
881, 87eqtr2id 2789 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))) = 𝑋)
8921, 84, 883eqtrd 2780 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  ifcif 4486  wf 6492  cfv 6496  (class class class)co 7356  cmpo 7358  m cmap 8764  Fincfn 8882  Basecbs 17082  0gc0g 17320  1rcur 19911  Ringcrg 19962   Mat cmat 21752   matRRep cmarrep 21903   matRepV cmatrepV 21904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-of 7616  df-om 7802  df-1st 7920  df-2nd 7921  df-supp 8092  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-1o 8411  df-er 8647  df-map 8766  df-ixp 8835  df-en 8883  df-dom 8884  df-sdom 8885  df-fin 8886  df-fsupp 9305  df-sup 9377  df-oi 9445  df-card 9874  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-nn 12153  df-2 12215  df-3 12216  df-4 12217  df-5 12218  df-6 12219  df-7 12220  df-8 12221  df-9 12222  df-n0 12413  df-z 12499  df-dec 12618  df-uz 12763  df-fz 13424  df-fzo 13567  df-seq 13906  df-hash 14230  df-struct 17018  df-sets 17035  df-slot 17053  df-ndx 17065  df-base 17083  df-ress 17112  df-plusg 17145  df-mulr 17146  df-sca 17148  df-vsca 17149  df-ip 17150  df-tset 17151  df-ple 17152  df-ds 17154  df-hom 17156  df-cco 17157  df-0g 17322  df-gsum 17323  df-prds 17328  df-pws 17330  df-mre 17465  df-mrc 17466  df-acs 17468  df-mgm 18496  df-sgrp 18545  df-mnd 18556  df-mhm 18600  df-submnd 18601  df-grp 18750  df-minusg 18751  df-sbg 18752  df-mulg 18871  df-subg 18923  df-ghm 19004  df-cntz 19095  df-cmn 19562  df-abl 19563  df-mgp 19895  df-ur 19912  df-ring 19964  df-subrg 20218  df-lmod 20322  df-lss 20391  df-sra 20631  df-rgmod 20632  df-dsmm 21136  df-frlm 21151  df-mamu 21731  df-mat 21753  df-marrep 21905  df-marepv 21906
This theorem is referenced by:  cramerimplem1  22030
  Copyright terms: Public domain W3C validator