MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1marepvmarrepid Structured version   Visualization version   GIF version

Theorem 1marepvmarrepid 22464
Description: Replacing the ith row by 0's and the ith component of a (column) vector at the diagonal position for the identity matrix with the ith column replaced by the vector results in the matrix itself. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
marepvmarrep1.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
marepvmarrep1.o 1 = (1r‘(𝑁 Mat 𝑅))
marepvmarrep1.x 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
Assertion
Ref Expression
1marepvmarrepid (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)

Proof of Theorem 1marepvmarrepid
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvmarrep1.x . . . 4 𝑋 = (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼)
2 eqid 2727 . . . . . 6 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2727 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 marepvmarrep1.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑m 𝑁)
5 marepvmarrep1.o . . . . . 6 1 = (1r‘(𝑁 Mat 𝑅))
62, 3, 4, 5ma1repvcl 22459 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
76ancom2s 649 . . . 4 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ (Base‘(𝑁 Mat 𝑅)))
81, 7eqeltrid 2832 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑋 ∈ (Base‘(𝑁 Mat 𝑅)))
9 elmapi 8859 . . . . . . 7 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍:𝑁⟶(Base‘𝑅))
10 ffvelcdm 7085 . . . . . . . 8 ((𝑍:𝑁⟶(Base‘𝑅) ∧ 𝐼𝑁) → (𝑍𝐼) ∈ (Base‘𝑅))
1110ex 412 . . . . . . 7 (𝑍:𝑁⟶(Base‘𝑅) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
129, 11syl 17 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1312, 4eleq2s 2846 . . . . 5 (𝑍𝑉 → (𝐼𝑁 → (𝑍𝐼) ∈ (Base‘𝑅)))
1413impcom 407 . . . 4 ((𝐼𝑁𝑍𝑉) → (𝑍𝐼) ∈ (Base‘𝑅))
1514adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑍𝐼) ∈ (Base‘𝑅))
16 simpl 482 . . . 4 ((𝐼𝑁𝑍𝑉) → 𝐼𝑁)
1716adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝐼𝑁)
18 eqid 2727 . . . 4 (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅)
19 eqid 2727 . . . 4 (0g𝑅) = (0g𝑅)
202, 3, 18, 19marrepval 22451 . . 3 (((𝑋 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝑍𝐼) ∈ (Base‘𝑅)) ∧ (𝐼𝑁𝐼𝑁)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
218, 15, 17, 17, 20syl22anc 838 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))))
22 iftrue 4530 . . . . . 6 (𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
2322adantr 480 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)))
24 iftrue 4530 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
2524adantr 480 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (𝑍𝐼))
26 iftrue 4530 . . . . . . . 8 (𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝑖))
27 fveq2 6891 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑍𝑖) = (𝑍𝐼))
2827adantr 480 . . . . . . . 8 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑍𝑖) = (𝑍𝐼))
2926, 28sylan9eq 2787 . . . . . . 7 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑍𝐼))
3025, 29eqtr4d 2770 . . . . . 6 ((𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
31 eqid 2727 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
32 simpr 484 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
3332adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑁 ∈ Fin)
34333ad2ant1 1131 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑁 ∈ Fin)
35 simpl 482 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring)
3635adantr 480 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑅 ∈ Ring)
37363ad2ant1 1131 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
38 simp2 1135 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
39 simp3 1136 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
402, 31, 19, 34, 37, 38, 39, 5mat1ov 22337 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4140adantl 481 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
4241adantl 481 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
43 eqtr2 2751 . . . . . . . . . . . . . 14 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝐼 = 𝑗)
4443eqcomd 2733 . . . . . . . . . . . . 13 ((𝑖 = 𝐼𝑖 = 𝑗) → 𝑗 = 𝐼)
4544ex 412 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (𝑖 = 𝑗𝑗 = 𝐼))
4645con3d 152 . . . . . . . . . . 11 (𝑖 = 𝐼 → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4746adantr 480 . . . . . . . . . 10 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (¬ 𝑗 = 𝐼 → ¬ 𝑖 = 𝑗))
4847impcom 407 . . . . . . . . 9 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → ¬ 𝑖 = 𝑗)
49 iffalse 4533 . . . . . . . . 9 𝑖 = 𝑗 → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5048, 49syl 17 . . . . . . . 8 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = (0g𝑅))
5142, 50eqtrd 2767 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → (𝑖 1 𝑗) = (0g𝑅))
52 iffalse 4533 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
5352adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)) = (𝑖 1 𝑗))
54 iffalse 4533 . . . . . . . 8 𝑗 = 𝐼 → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5554adantr 480 . . . . . . 7 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = (0g𝑅))
5651, 53, 553eqtr4rd 2778 . . . . . 6 ((¬ 𝑗 = 𝐼 ∧ (𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁))) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5730, 56pm2.61ian 811 . . . . 5 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
5823, 57eqtrd 2767 . . . 4 ((𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
59 iffalse 4533 . . . . . 6 𝑖 = 𝐼 → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
6059adantr 480 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = (𝑖𝑋𝑗))
612, 3, 5mat1bas 22338 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
6261adantr 480 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 1 ∈ (Base‘(𝑁 Mat 𝑅)))
63 simpr 484 . . . . . . . . . . 11 ((𝐼𝑁𝑍𝑉) → 𝑍𝑉)
6463adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → 𝑍𝑉)
6562, 64, 173jca 1126 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
66653ad2ant1 1131 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁))
67 3simpc 1148 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
6837, 66, 673jca 1126 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
6968adantl 481 . . . . . 6 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)))
702, 3, 4, 5, 19, 1ma1repveval 22460 . . . . . 6 ((𝑅 ∈ Ring ∧ ( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7169, 70syl 17 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → (𝑖𝑋𝑗) = if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
7234ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑁 ∈ Fin)
7337ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑅 ∈ Ring)
7438ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑖𝑁)
7539ad2antlr 726 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → 𝑗𝑁)
762, 31, 19, 72, 73, 74, 75, 5mat1ov 22337 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 1 𝑗) = if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)))
77 equcom 2014 . . . . . . . . 9 (𝑖 = 𝑗𝑗 = 𝑖)
7877a1i 11 . . . . . . . 8 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → (𝑖 = 𝑗𝑗 = 𝑖))
7978ifbid 4547 . . . . . . 7 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑖 = 𝑗, (1r𝑅), (0g𝑅)) = if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
8076, 79eqtr2d 2768 . . . . . 6 (((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) ∧ ¬ 𝑗 = 𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (𝑖 1 𝑗))
8180ifeq2da 4556 . . . . 5 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑗 = 𝐼, (𝑍𝑖), if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8260, 71, 813eqtrd 2771 . . . 4 ((¬ 𝑖 = 𝐼 ∧ (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁)) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8358, 82pm2.61ian 811 . . 3 ((((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗)) = if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗)))
8483mpoeq3dva 7491 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, if(𝑗 = 𝐼, (𝑍𝐼), (0g𝑅)), (𝑖𝑋𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
85 eqid 2727 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
862, 3, 85, 4marepvval 22456 . . . 4 (( 1 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝑍𝑉𝐼𝑁) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
8765, 86syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (( 1 (𝑁 matRepV 𝑅)𝑍)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))))
881, 87eqtr2id 2780 . 2 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑍𝑖), (𝑖 1 𝑗))) = 𝑋)
8921, 84, 883eqtrd 2771 1 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝐼𝑁𝑍𝑉)) → (𝐼(𝑋(𝑁 matRRep 𝑅)(𝑍𝐼))𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  ifcif 4524  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  m cmap 8836  Fincfn 8955  Basecbs 17171  0gc0g 17412  1rcur 20112  Ringcrg 20164   Mat cmat 22294   matRRep cmarrep 22445   matRepV cmatrepV 22446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-mamu 22273  df-mat 22295  df-marrep 22447  df-marepv 22448
This theorem is referenced by:  cramerimplem1  22572
  Copyright terms: Public domain W3C validator