Step | Hyp | Ref
| Expression |
1 | | pcopt.1 |
. . . . . . . . 9
β’ π = ((0[,]1) Γ {π}) |
2 | 1 | fveq1i 6889 |
. . . . . . . 8
β’ (πβ((2 Β· π₯) β 1)) = (((0[,]1)
Γ {π})β((2
Β· π₯) β
1)) |
3 | | simpr 485 |
. . . . . . . . . 10
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉβ1) = π) |
4 | | iiuni 24388 |
. . . . . . . . . . . . 13
β’ (0[,]1) =
βͺ II |
5 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ βͺ π½ =
βͺ π½ |
6 | 4, 5 | cnf 22741 |
. . . . . . . . . . . 12
β’ (πΉ β (II Cn π½) β πΉ:(0[,]1)βΆβͺ
π½) |
7 | 6 | adantr 481 |
. . . . . . . . . . 11
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β πΉ:(0[,]1)βΆβͺ
π½) |
8 | | 1elunit 13443 |
. . . . . . . . . . 11
β’ 1 β
(0[,]1) |
9 | | ffvelcdm 7080 |
. . . . . . . . . . 11
β’ ((πΉ:(0[,]1)βΆβͺ π½
β§ 1 β (0[,]1)) β (πΉβ1) β βͺ π½) |
10 | 7, 8, 9 | sylancl 586 |
. . . . . . . . . 10
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉβ1) β βͺ π½) |
11 | 3, 10 | eqeltrrd 2834 |
. . . . . . . . 9
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β π β βͺ π½) |
12 | | elii2 24443 |
. . . . . . . . . 10
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β
π₯ β ((1 /
2)[,]1)) |
13 | | iihalf2 24440 |
. . . . . . . . . 10
β’ (π₯ β ((1 / 2)[,]1) β ((2
Β· π₯) β 1)
β (0[,]1)) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
β’ ((π₯ β (0[,]1) β§ Β¬
π₯ β€ (1 / 2)) β ((2
Β· π₯) β 1)
β (0[,]1)) |
15 | | fvconst2g 7199 |
. . . . . . . . 9
β’ ((π β βͺ π½
β§ ((2 Β· π₯)
β 1) β (0[,]1)) β (((0[,]1) Γ {π})β((2 Β· π₯) β 1)) = π) |
16 | 11, 14, 15 | syl2an 596 |
. . . . . . . 8
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π₯ β (0[,]1) β§ Β¬ π₯ β€ (1 / 2))) β (((0[,]1)
Γ {π})β((2
Β· π₯) β 1)) =
π) |
17 | 2, 16 | eqtrid 2784 |
. . . . . . 7
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π₯ β (0[,]1) β§ Β¬ π₯ β€ (1 / 2))) β (πβ((2 Β· π₯) β 1)) = π) |
18 | | simplr 767 |
. . . . . . 7
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π₯ β (0[,]1) β§ Β¬ π₯ β€ (1 / 2))) β (πΉβ1) = π) |
19 | 17, 18 | eqtr4d 2775 |
. . . . . 6
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π₯ β (0[,]1) β§ Β¬ π₯ β€ (1 / 2))) β (πβ((2 Β· π₯) β 1)) = (πΉβ1)) |
20 | 19 | anassrs 468 |
. . . . 5
β’ ((((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ π₯ β (0[,]1)) β§ Β¬ π₯ β€ (1 / 2)) β (πβ((2 Β· π₯) β 1)) = (πΉβ1)) |
21 | 20 | ifeq2da 4559 |
. . . 4
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ π₯ β (0[,]1)) β if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πβ((2 Β· π₯) β 1))) = if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΉβ1))) |
22 | 21 | mpteq2dva 5247 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πβ((2 Β· π₯) β 1)))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΉβ1)))) |
23 | | simpl 483 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β πΉ β (II Cn π½)) |
24 | | cntop2 22736 |
. . . . . . . 8
β’ (πΉ β (II Cn π½) β π½ β Top) |
25 | 24 | adantr 481 |
. . . . . . 7
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β π½ β Top) |
26 | | toptopon2 22411 |
. . . . . . 7
β’ (π½ β Top β π½ β (TopOnββͺ π½)) |
27 | 25, 26 | sylib 217 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β π½ β (TopOnββͺ π½)) |
28 | 1 | pcoptcl 24528 |
. . . . . 6
β’ ((π½ β (TopOnββͺ π½)
β§ π β βͺ π½)
β (π β (II Cn
π½) β§ (πβ0) = π β§ (πβ1) = π)) |
29 | 27, 11, 28 | syl2anc 584 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π β (II Cn π½) β§ (πβ0) = π β§ (πβ1) = π)) |
30 | 29 | simp1d 1142 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β π β (II Cn π½)) |
31 | 23, 30 | pcoval 24518 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉ(*πβπ½)π) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πβ((2 Β· π₯) β 1))))) |
32 | | iftrue 4533 |
. . . . . . . . 9
β’ (π₯ β€ (1 / 2) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) = (2 Β· π₯)) |
33 | 32 | adantl 482 |
. . . . . . . 8
β’ ((π₯ β (0[,]1) β§ π₯ β€ (1 / 2)) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) = (2 Β· π₯)) |
34 | | elii1 24442 |
. . . . . . . . 9
β’ (π₯ β (0[,](1 / 2)) β
(π₯ β (0[,]1) β§
π₯ β€ (1 /
2))) |
35 | | iihalf1 24438 |
. . . . . . . . 9
β’ (π₯ β (0[,](1 / 2)) β (2
Β· π₯) β
(0[,]1)) |
36 | 34, 35 | sylbir 234 |
. . . . . . . 8
β’ ((π₯ β (0[,]1) β§ π₯ β€ (1 / 2)) β (2
Β· π₯) β
(0[,]1)) |
37 | 33, 36 | eqeltrd 2833 |
. . . . . . 7
β’ ((π₯ β (0[,]1) β§ π₯ β€ (1 / 2)) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β
(0[,]1)) |
38 | 37 | ex 413 |
. . . . . 6
β’ (π₯ β (0[,]1) β (π₯ β€ (1 / 2) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β
(0[,]1))) |
39 | | iffalse 4536 |
. . . . . . 7
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), (2
Β· π₯), 1) =
1) |
40 | 39, 8 | eqeltrdi 2841 |
. . . . . 6
β’ (Β¬
π₯ β€ (1 / 2) β
if(π₯ β€ (1 / 2), (2
Β· π₯), 1) β
(0[,]1)) |
41 | 38, 40 | pm2.61d1 180 |
. . . . 5
β’ (π₯ β (0[,]1) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β
(0[,]1)) |
42 | 41 | adantl 482 |
. . . 4
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ π₯ β (0[,]1)) β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β (0[,]1)) |
43 | | eqidd 2733 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1))) |
44 | 7 | feqmptd 6957 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β πΉ = (π¦ β (0[,]1) β¦ (πΉβπ¦))) |
45 | | fveq2 6888 |
. . . . 5
β’ (π¦ = if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β (πΉβπ¦) = (πΉβif(π₯ β€ (1 / 2), (2 Β· π₯), 1))) |
46 | | fvif 6904 |
. . . . 5
β’ (πΉβif(π₯ β€ (1 / 2), (2 Β· π₯), 1)) = if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΉβ1)) |
47 | 45, 46 | eqtrdi 2788 |
. . . 4
β’ (π¦ = if(π₯ β€ (1 / 2), (2 Β· π₯), 1) β (πΉβπ¦) = if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΉβ1))) |
48 | 42, 43, 44, 47 | fmptco 7123 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1))) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (πΉβ(2 Β· π₯)), (πΉβ1)))) |
49 | 22, 31, 48 | 3eqtr4d 2782 |
. 2
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉ(*πβπ½)π) = (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)))) |
50 | | iitopon 24386 |
. . . . 5
β’ II β
(TopOnβ(0[,]1)) |
51 | 50 | a1i 11 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β II β
(TopOnβ(0[,]1))) |
52 | 51 | cnmptid 23156 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,]1) β¦ π₯) β (II Cn II)) |
53 | | 0elunit 13442 |
. . . . . 6
β’ 0 β
(0[,]1) |
54 | 53 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β 0 β (0[,]1)) |
55 | 51, 51, 54 | cnmptc 23157 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,]1) β¦ 0) β (II Cn
II)) |
56 | | eqid 2732 |
. . . . 5
β’
(topGenβran (,)) = (topGenβran (,)) |
57 | | eqid 2732 |
. . . . 5
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) =
((topGenβran (,)) βΎt (0[,](1 / 2))) |
58 | | eqid 2732 |
. . . . 5
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) =
((topGenβran (,)) βΎt ((1 / 2)[,]1)) |
59 | | dfii2 24389 |
. . . . 5
β’ II =
((topGenβran (,)) βΎt (0[,]1)) |
60 | | 0re 11212 |
. . . . . 6
β’ 0 β
β |
61 | 60 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β 0 β β) |
62 | | 1re 11210 |
. . . . . 6
β’ 1 β
β |
63 | 62 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β 1 β β) |
64 | | halfre 12422 |
. . . . . . 7
β’ (1 / 2)
β β |
65 | | halfge0 12425 |
. . . . . . 7
β’ 0 β€ (1
/ 2) |
66 | | halflt1 12426 |
. . . . . . . 8
β’ (1 / 2)
< 1 |
67 | 64, 62, 66 | ltleii 11333 |
. . . . . . 7
β’ (1 / 2)
β€ 1 |
68 | | elicc01 13439 |
. . . . . . 7
β’ ((1 / 2)
β (0[,]1) β ((1 / 2) β β β§ 0 β€ (1 / 2) β§ (1 /
2) β€ 1)) |
69 | 64, 65, 67, 68 | mpbir3an 1341 |
. . . . . 6
β’ (1 / 2)
β (0[,]1) |
70 | 69 | a1i 11 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (1 / 2) β
(0[,]1)) |
71 | | simprl 769 |
. . . . . . 7
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β π¦ = (1 / 2)) |
72 | 71 | oveq2d 7421 |
. . . . . 6
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = (2 Β· (1 /
2))) |
73 | | 2cn 12283 |
. . . . . . 7
β’ 2 β
β |
74 | | 2ne0 12312 |
. . . . . . 7
β’ 2 β
0 |
75 | 73, 74 | recidi 11941 |
. . . . . 6
β’ (2
Β· (1 / 2)) = 1 |
76 | 72, 75 | eqtrdi 2788 |
. . . . 5
β’ (((πΉ β (II Cn π½) β§ (πΉβ1) = π) β§ (π¦ = (1 / 2) β§ π§ β (0[,]1))) β (2 Β· π¦) = 1) |
77 | | retopon 24271 |
. . . . . . . 8
β’
(topGenβran (,)) β (TopOnββ) |
78 | | iccssre 13402 |
. . . . . . . . 9
β’ ((0
β β β§ (1 / 2) β β) β (0[,](1 / 2)) β
β) |
79 | 60, 64, 78 | mp2an 690 |
. . . . . . . 8
β’ (0[,](1 /
2)) β β |
80 | | resttopon 22656 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ (0[,](1 /
2)) β β) β ((topGenβran (,)) βΎt (0[,](1
/ 2))) β (TopOnβ(0[,](1 / 2)))) |
81 | 77, 79, 80 | mp2an 690 |
. . . . . . 7
β’
((topGenβran (,)) βΎt (0[,](1 / 2))) β
(TopOnβ(0[,](1 / 2))) |
82 | 81 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β ((topGenβran (,))
βΎt (0[,](1 / 2))) β (TopOnβ(0[,](1 /
2)))) |
83 | 82, 51 | cnmpt1st 23163 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ π¦) β ((((topGenβran (,))
βΎt (0[,](1 / 2))) Γt II) Cn
((topGenβran (,)) βΎt (0[,](1 / 2))))) |
84 | 57 | iihalf1cn 24439 |
. . . . . . 7
β’ (π₯ β (0[,](1 / 2)) β¦ (2
Β· π₯)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II) |
85 | 84 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,](1 / 2)) β¦ (2 Β·
π₯)) β
(((topGenβran (,)) βΎt (0[,](1 / 2))) Cn
II)) |
86 | | oveq2 7413 |
. . . . . 6
β’ (π₯ = π¦ β (2 Β· π₯) = (2 Β· π¦)) |
87 | 82, 51, 83, 82, 85, 86 | cnmpt21 23166 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π¦ β (0[,](1 / 2)), π§ β (0[,]1) β¦ (2 Β· π¦)) β ((((topGenβran
(,)) βΎt (0[,](1 / 2))) Γt II) Cn
II)) |
88 | | iccssre 13402 |
. . . . . . . . 9
β’ (((1 / 2)
β β β§ 1 β β) β ((1 / 2)[,]1) β
β) |
89 | 64, 62, 88 | mp2an 690 |
. . . . . . . 8
β’ ((1 /
2)[,]1) β β |
90 | | resttopon 22656 |
. . . . . . . 8
β’
(((topGenβran (,)) β (TopOnββ) β§ ((1 /
2)[,]1) β β) β ((topGenβran (,)) βΎt ((1
/ 2)[,]1)) β (TopOnβ((1 / 2)[,]1))) |
91 | 77, 89, 90 | mp2an 690 |
. . . . . . 7
β’
((topGenβran (,)) βΎt ((1 / 2)[,]1)) β
(TopOnβ((1 / 2)[,]1)) |
92 | 91 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β ((topGenβran (,))
βΎt ((1 / 2)[,]1)) β (TopOnβ((1 /
2)[,]1))) |
93 | 8 | a1i 11 |
. . . . . 6
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β 1 β (0[,]1)) |
94 | 92, 51, 51, 93 | cnmpt2c 23165 |
. . . . 5
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π¦ β ((1 / 2)[,]1), π§ β (0[,]1) β¦ 1) β
((((topGenβran (,)) βΎt ((1 / 2)[,]1))
Γt II) Cn II)) |
95 | 56, 57, 58, 59, 61, 63, 70, 51, 76, 87, 94 | cnmpopc 24435 |
. . . 4
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π¦ β (0[,]1), π§ β (0[,]1) β¦ if(π¦ β€ (1 / 2), (2 Β· π¦), 1)) β ((II Γt II) Cn
II)) |
96 | | breq1 5150 |
. . . . . 6
β’ (π¦ = π₯ β (π¦ β€ (1 / 2) β π₯ β€ (1 / 2))) |
97 | | oveq2 7413 |
. . . . . 6
β’ (π¦ = π₯ β (2 Β· π¦) = (2 Β· π₯)) |
98 | 96, 97 | ifbieq1d 4551 |
. . . . 5
β’ (π¦ = π₯ β if(π¦ β€ (1 / 2), (2 Β· π¦), 1) = if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) |
99 | 98 | adantr 481 |
. . . 4
β’ ((π¦ = π₯ β§ π§ = 0) β if(π¦ β€ (1 / 2), (2 Β· π¦), 1) = if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) |
100 | 51, 52, 55, 51, 51, 95, 99 | cnmpt12 23162 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) β (II Cn II)) |
101 | | id 22 |
. . . . . . . 8
β’ (π₯ = 0 β π₯ = 0) |
102 | 101, 65 | eqbrtrdi 5186 |
. . . . . . 7
β’ (π₯ = 0 β π₯ β€ (1 / 2)) |
103 | 102, 32 | syl 17 |
. . . . . 6
β’ (π₯ = 0 β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) = (2 Β· π₯)) |
104 | | oveq2 7413 |
. . . . . . 7
β’ (π₯ = 0 β (2 Β· π₯) = (2 Β·
0)) |
105 | | 2t0e0 12377 |
. . . . . . 7
β’ (2
Β· 0) = 0 |
106 | 104, 105 | eqtrdi 2788 |
. . . . . 6
β’ (π₯ = 0 β (2 Β· π₯) = 0) |
107 | 103, 106 | eqtrd 2772 |
. . . . 5
β’ (π₯ = 0 β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) = 0) |
108 | | eqid 2732 |
. . . . 5
β’ (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) = (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)) |
109 | | c0ex 11204 |
. . . . 5
β’ 0 β
V |
110 | 107, 108,
109 | fvmpt 6995 |
. . . 4
β’ (0 β
(0[,]1) β ((π₯ β
(0[,]1) β¦ if(π₯ β€
(1 / 2), (2 Β· π₯),
1))β0) = 0) |
111 | 53, 110 | mp1i 13 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β ((π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1))β0) = 0) |
112 | 64, 62 | ltnlei 11331 |
. . . . . . . 8
β’ ((1 / 2)
< 1 β Β¬ 1 β€ (1 / 2)) |
113 | 66, 112 | mpbi 229 |
. . . . . . 7
β’ Β¬ 1
β€ (1 / 2) |
114 | | breq1 5150 |
. . . . . . 7
β’ (π₯ = 1 β (π₯ β€ (1 / 2) β 1 β€ (1 /
2))) |
115 | 113, 114 | mtbiri 326 |
. . . . . 6
β’ (π₯ = 1 β Β¬ π₯ β€ (1 / 2)) |
116 | 115, 39 | syl 17 |
. . . . 5
β’ (π₯ = 1 β if(π₯ β€ (1 / 2), (2 Β· π₯), 1) = 1) |
117 | | 1ex 11206 |
. . . . 5
β’ 1 β
V |
118 | 116, 108,
117 | fvmpt 6995 |
. . . 4
β’ (1 β
(0[,]1) β ((π₯ β
(0[,]1) β¦ if(π₯ β€
(1 / 2), (2 Β· π₯),
1))β1) = 1) |
119 | 8, 118 | mp1i 13 |
. . 3
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β ((π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1))β1) = 1) |
120 | 23, 100, 111, 119 | reparpht 24505 |
. 2
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉ β (π₯ β (0[,]1) β¦ if(π₯ β€ (1 / 2), (2 Β· π₯), 1)))(
βphβπ½)πΉ) |
121 | 49, 120 | eqbrtrd 5169 |
1
β’ ((πΉ β (II Cn π½) β§ (πΉβ1) = π) β (πΉ(*πβπ½)π)( βphβπ½)πΉ) |