MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt2 Structured version   Visualization version   GIF version

Theorem pcopt2 23561
Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . 9 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6670 . . . . . . . 8 (𝑃‘((2 · 𝑥) − 1)) = (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1))
3 simpr 485 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) = 𝑌)
4 iiuni 23423 . . . . . . . . . . . . 13 (0[,]1) = II
5 eqid 2826 . . . . . . . . . . . . 13 𝐽 = 𝐽
64, 5cnf 21789 . . . . . . . . . . . 12 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 1elunit 12851 . . . . . . . . . . 11 1 ∈ (0[,]1)
9 ffvelrn 6847 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝐽)
107, 8, 9sylancl 586 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) ∈ 𝐽)
113, 10eqeltrrd 2919 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑌 𝐽)
12 elii2 23474 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
13 iihalf2 23471 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1412, 13syl 17 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
15 fvconst2g 6962 . . . . . . . . 9 ((𝑌 𝐽 ∧ ((2 · 𝑥) − 1) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
1611, 14, 15syl2an 595 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
172, 16syl5eq 2873 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = 𝑌)
18 simplr 765 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝐹‘1) = 𝑌)
1917, 18eqtr4d 2864 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2019anassrs 468 . . . . 5 ((((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2120ifeq2da 4501 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
2221mpteq2dva 5158 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
23 simpl 483 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
24 cntop2 21784 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2524adantr 481 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ Top)
26 toptopon2 21461 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2725, 26sylib 219 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
281pcoptcl 23559 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
2927, 11, 28syl2anc 584 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3029simp1d 1136 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
3123, 30pcoval 23549 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))))
32 iftrue 4476 . . . . . . . . 9 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
3332adantl 482 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
34 elii1 23473 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
35 iihalf1 23469 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3634, 35sylbir 236 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3733, 36eqeltrd 2918 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
3837ex 413 . . . . . 6 (𝑥 ∈ (0[,]1) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1)))
39 iffalse 4479 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
4039, 8syl6eqel 2926 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4138, 40pm2.61d1 181 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4241adantl 482 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
43 eqidd 2827 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
447feqmptd 6732 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
45 fveq2 6669 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
46 fvif 6685 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))
4745, 46syl6eq 2877 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
4842, 43, 44, 47fmptco 6889 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
4922, 31, 483eqtr4d 2871 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))))
50 iitopon 23421 . . . . 5 II ∈ (TopOn‘(0[,]1))
5150a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5251cnmptid 22204 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
53 0elunit 12850 . . . . . 6 0 ∈ (0[,]1)
5453a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ (0[,]1))
5551, 51, 54cnmptc 22205 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
56 eqid 2826 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
57 eqid 2826 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
58 eqid 2826 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
59 dfii2 23424 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
60 0re 10637 . . . . . 6 0 ∈ ℝ
6160a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ ℝ)
62 1re 10635 . . . . . 6 1 ∈ ℝ
6362a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ ℝ)
64 halfre 11845 . . . . . . 7 (1 / 2) ∈ ℝ
65 halfge0 11848 . . . . . . 7 0 ≤ (1 / 2)
66 halflt1 11849 . . . . . . . 8 (1 / 2) < 1
6764, 62, 66ltleii 10757 . . . . . . 7 (1 / 2) ≤ 1
68 elicc01 12849 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
6964, 65, 67, 68mpbir3an 1335 . . . . . 6 (1 / 2) ∈ (0[,]1)
7069a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (1 / 2) ∈ (0[,]1))
71 simprl 767 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7271oveq2d 7166 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
73 2cn 11706 . . . . . . 7 2 ∈ ℂ
74 2ne0 11735 . . . . . . 7 2 ≠ 0
7573, 74recidi 11365 . . . . . 6 (2 · (1 / 2)) = 1
7672, 75syl6eq 2877 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
77 retopon 23306 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
78 iccssre 12813 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
7960, 64, 78mp2an 688 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
80 resttopon 21704 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8177, 79, 80mp2an 688 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8281a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8382, 51cnmpt1st 22211 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
8457iihalf1cn 23470 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
8584a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
86 oveq2 7158 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
8782, 51, 83, 82, 85, 86cnmpt21 22214 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
88 iccssre 12813 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
8964, 62, 88mp2an 688 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
90 resttopon 21704 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9177, 89, 90mp2an 688 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9291a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
938a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ (0[,]1))
9492, 51, 51, 93cnmpt2c 22213 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 1) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
9556, 57, 58, 59, 61, 63, 70, 51, 76, 87, 94cnmpopc 23466 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1)) ∈ ((II ×t II) Cn II))
96 breq1 5066 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
97 oveq2 7158 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
9896, 97ifbieq1d 4493 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
9998adantr 481 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
10051, 52, 55, 51, 51, 95, 99cnmpt12 22210 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) ∈ (II Cn II))
101 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
102101, 65eqbrtrdi 5102 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
103102, 32syl 17 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
104 oveq2 7158 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
105 2t0e0 11800 . . . . . . 7 (2 · 0) = 0
106104, 105syl6eq 2877 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
107103, 106eqtrd 2861 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 0)
108 eqid 2826 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
109 c0ex 10629 . . . . 5 0 ∈ V
110107, 108, 109fvmpt 6767 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11153, 110mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11264, 62ltnlei 10755 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11366, 112mpbi 231 . . . . . . 7 ¬ 1 ≤ (1 / 2)
114 breq1 5066 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
115113, 114mtbiri 328 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
116115, 39syl 17 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
117 1ex 10631 . . . . 5 1 ∈ V
118116, 108, 117fvmpt 6767 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
1198, 118mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
12023, 100, 111, 119reparpht 23536 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))( ≃ph𝐽)𝐹)
12149, 120eqbrtrd 5085 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wss 3940  ifcif 4470  {csn 4564   cuni 4837   class class class wbr 5063  cmpt 5143   × cxp 5552  ran crn 5555  ccom 5558  wf 6350  cfv 6354  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  (,)cioo 12733  [,]cicc 12736  t crest 16689  topGenctg 16706  Topctop 21436  TopOnctopon 21453   Cn ccn 21767  IIcii 23417  phcphtpc 23507  *𝑝cpco 23538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-icc 12740  df-fz 12888  df-fzo 13029  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18170  df-cntz 18392  df-cmn 18844  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-cn 21770  df-cnp 21771  df-tx 22105  df-hmeo 22298  df-xms 22864  df-ms 22865  df-tms 22866  df-ii 23419  df-htpy 23508  df-phtpy 23509  df-phtpc 23530  df-pco 23543
This theorem is referenced by:  pcophtb  23567  pi1xfrcnvlem  23594
  Copyright terms: Public domain W3C validator