MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt2 Structured version   Visualization version   GIF version

Theorem pcopt2 25056
Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . 9 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6907 . . . . . . . 8 (𝑃‘((2 · 𝑥) − 1)) = (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1))
3 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) = 𝑌)
4 iiuni 24907 . . . . . . . . . . . . 13 (0[,]1) = II
5 eqid 2737 . . . . . . . . . . . . 13 𝐽 = 𝐽
64, 5cnf 23254 . . . . . . . . . . . 12 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 1elunit 13510 . . . . . . . . . . 11 1 ∈ (0[,]1)
9 ffvelcdm 7101 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝐽)
107, 8, 9sylancl 586 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) ∈ 𝐽)
113, 10eqeltrrd 2842 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑌 𝐽)
12 elii2 24965 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
13 iihalf2 24961 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1412, 13syl 17 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
15 fvconst2g 7222 . . . . . . . . 9 ((𝑌 𝐽 ∧ ((2 · 𝑥) − 1) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
1611, 14, 15syl2an 596 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
172, 16eqtrid 2789 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = 𝑌)
18 simplr 769 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝐹‘1) = 𝑌)
1917, 18eqtr4d 2780 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2019anassrs 467 . . . . 5 ((((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2120ifeq2da 4558 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
2221mpteq2dva 5242 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
23 simpl 482 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
24 cntop2 23249 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2524adantr 480 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ Top)
26 toptopon2 22924 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2725, 26sylib 218 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
281pcoptcl 25054 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
2927, 11, 28syl2anc 584 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3029simp1d 1143 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
3123, 30pcoval 25044 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))))
32 iftrue 4531 . . . . . . . . 9 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
3332adantl 481 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
34 elii1 24964 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
35 iihalf1 24958 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3634, 35sylbir 235 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3733, 36eqeltrd 2841 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
3837ex 412 . . . . . 6 (𝑥 ∈ (0[,]1) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1)))
39 iffalse 4534 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
4039, 8eqeltrdi 2849 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4138, 40pm2.61d1 180 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4241adantl 481 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
43 eqidd 2738 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
447feqmptd 6977 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
45 fveq2 6906 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
46 fvif 6922 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))
4745, 46eqtrdi 2793 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
4842, 43, 44, 47fmptco 7149 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
4922, 31, 483eqtr4d 2787 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))))
50 iitopon 24905 . . . . 5 II ∈ (TopOn‘(0[,]1))
5150a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5251cnmptid 23669 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
53 0elunit 13509 . . . . . 6 0 ∈ (0[,]1)
5453a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ (0[,]1))
5551, 51, 54cnmptc 23670 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
56 eqid 2737 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
57 eqid 2737 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
58 eqid 2737 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
59 dfii2 24908 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
60 0re 11263 . . . . . 6 0 ∈ ℝ
6160a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ ℝ)
62 1re 11261 . . . . . 6 1 ∈ ℝ
6362a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ ℝ)
64 halfre 12480 . . . . . . 7 (1 / 2) ∈ ℝ
65 halfge0 12483 . . . . . . 7 0 ≤ (1 / 2)
66 halflt1 12484 . . . . . . . 8 (1 / 2) < 1
6764, 62, 66ltleii 11384 . . . . . . 7 (1 / 2) ≤ 1
68 elicc01 13506 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
6964, 65, 67, 68mpbir3an 1342 . . . . . 6 (1 / 2) ∈ (0[,]1)
7069a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (1 / 2) ∈ (0[,]1))
71 simprl 771 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7271oveq2d 7447 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
73 2cn 12341 . . . . . . 7 2 ∈ ℂ
74 2ne0 12370 . . . . . . 7 2 ≠ 0
7573, 74recidi 11998 . . . . . 6 (2 · (1 / 2)) = 1
7672, 75eqtrdi 2793 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
77 retopon 24784 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
78 iccssre 13469 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
7960, 64, 78mp2an 692 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
80 resttopon 23169 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8177, 79, 80mp2an 692 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8281a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8382, 51cnmpt1st 23676 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
8457iihalf1cn 24959 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
8584a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
86 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
8782, 51, 83, 82, 85, 86cnmpt21 23679 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
88 iccssre 13469 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
8964, 62, 88mp2an 692 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
90 resttopon 23169 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9177, 89, 90mp2an 692 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9291a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
938a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ (0[,]1))
9492, 51, 51, 93cnmpt2c 23678 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 1) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
9556, 57, 58, 59, 61, 63, 70, 51, 76, 87, 94cnmpopc 24955 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1)) ∈ ((II ×t II) Cn II))
96 breq1 5146 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
97 oveq2 7439 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
9896, 97ifbieq1d 4550 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
9998adantr 480 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
10051, 52, 55, 51, 51, 95, 99cnmpt12 23675 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) ∈ (II Cn II))
101 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
102101, 65eqbrtrdi 5182 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
103102, 32syl 17 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
104 oveq2 7439 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
105 2t0e0 12435 . . . . . . 7 (2 · 0) = 0
106104, 105eqtrdi 2793 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
107103, 106eqtrd 2777 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 0)
108 eqid 2737 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
109 c0ex 11255 . . . . 5 0 ∈ V
110107, 108, 109fvmpt 7016 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11153, 110mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11264, 62ltnlei 11382 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11366, 112mpbi 230 . . . . . . 7 ¬ 1 ≤ (1 / 2)
114 breq1 5146 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
115113, 114mtbiri 327 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
116115, 39syl 17 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
117 1ex 11257 . . . . 5 1 ∈ V
118116, 108, 117fvmpt 7016 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
1198, 118mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
12023, 100, 111, 119reparpht 25031 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))( ≃ph𝐽)𝐹)
12149, 120eqbrtrd 5165 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  ifcif 4525  {csn 4626   cuni 4907   class class class wbr 5143  cmpt 5225   × cxp 5683  ran crn 5686  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  (,)cioo 13387  [,]cicc 13390  t crest 17465  topGenctg 17482  Topctop 22899  TopOnctopon 22916   Cn ccn 23232  IIcii 24901  phcphtpc 25001  *𝑝cpco 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pco 25038
This theorem is referenced by:  pcophtb  25062  pi1xfrcnvlem  25089
  Copyright terms: Public domain W3C validator