Step | Hyp | Ref
| Expression |
1 | | pcopt.1 |
. . . . . . . . 9
⊢ 𝑃 = ((0[,]1) × {𝑌}) |
2 | 1 | fveq1i 6665 |
. . . . . . . 8
⊢ (𝑃‘((2 · 𝑥) − 1)) = (((0[,]1)
× {𝑌})‘((2
· 𝑥) −
1)) |
3 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) = 𝑌) |
4 | | iiuni 23597 |
. . . . . . . . . . . . 13
⊢ (0[,]1) =
∪ II |
5 | | eqid 2759 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
6 | 4, 5 | cnf 21961 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪
𝐽) |
7 | 6 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹:(0[,]1)⟶∪
𝐽) |
8 | | 1elunit 12916 |
. . . . . . . . . . 11
⊢ 1 ∈
(0[,]1) |
9 | | ffvelrn 6847 |
. . . . . . . . . . 11
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ ∪ 𝐽) |
10 | 7, 8, 9 | sylancl 589 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) ∈ ∪ 𝐽) |
11 | 3, 10 | eqeltrrd 2854 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑌 ∈ ∪ 𝐽) |
12 | | elii2 23652 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
𝑥 ∈ ((1 /
2)[,]1)) |
13 | | iihalf2 23649 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) → ((2
· 𝑥) − 1)
∈ (0[,]1)) |
15 | | fvconst2g 6962 |
. . . . . . . . 9
⊢ ((𝑌 ∈ ∪ 𝐽
∧ ((2 · 𝑥)
− 1) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌) |
16 | 11, 14, 15 | syl2an 598 |
. . . . . . . 8
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (((0[,]1)
× {𝑌})‘((2
· 𝑥) − 1)) =
𝑌) |
17 | 2, 16 | syl5eq 2806 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = 𝑌) |
18 | | simplr 768 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝐹‘1) = 𝑌) |
19 | 17, 18 | eqtr4d 2797 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1)) |
20 | 19 | anassrs 471 |
. . . . 5
⊢ ((((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1)) |
21 | 20 | ifeq2da 4456 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))) |
22 | 21 | mpteq2dva 5132 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))) |
23 | | simpl 486 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 ∈ (II Cn 𝐽)) |
24 | | cntop2 21956 |
. . . . . . . 8
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
25 | 24 | adantr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ Top) |
26 | | toptopon2 21633 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
27 | 25, 26 | sylib 221 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
28 | 1 | pcoptcl 23737 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑌 ∈ ∪ 𝐽)
→ (𝑃 ∈ (II Cn
𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
29 | 27, 11, 28 | syl2anc 587 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
30 | 29 | simp1d 1140 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑃 ∈ (II Cn 𝐽)) |
31 | 23, 30 | pcoval 23727 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))))) |
32 | | iftrue 4430 |
. . . . . . . . 9
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
33 | 32 | adantl 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
34 | | elii1 23651 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,](1 / 2)) ↔
(𝑥 ∈ (0[,]1) ∧
𝑥 ≤ (1 /
2))) |
35 | | iihalf1 23647 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0[,](1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
36 | 34, 35 | sylbir 238 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2
· 𝑥) ∈
(0[,]1)) |
37 | 33, 36 | eqeltrd 2853 |
. . . . . . 7
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1)) |
38 | 37 | ex 416 |
. . . . . 6
⊢ (𝑥 ∈ (0[,]1) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1))) |
39 | | iffalse 4433 |
. . . . . . 7
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (2
· 𝑥), 1) =
1) |
40 | 39, 8 | eqeltrdi 2861 |
. . . . . 6
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), (2
· 𝑥), 1) ∈
(0[,]1)) |
41 | 38, 40 | pm2.61d1 183 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈
(0[,]1)) |
42 | 41 | adantl 485 |
. . . 4
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1)) |
43 | | eqidd 2760 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) |
44 | 7 | feqmptd 6727 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑦))) |
45 | | fveq2 6664 |
. . . . 5
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹‘𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) |
46 | | fvif 6680 |
. . . . 5
⊢ (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)) |
47 | 45, 46 | eqtrdi 2810 |
. . . 4
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹‘𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))) |
48 | 42, 43, 44, 47 | fmptco 6889 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))) |
49 | 22, 31, 48 | 3eqtr4d 2804 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))) |
50 | | iitopon 23595 |
. . . . 5
⊢ II ∈
(TopOn‘(0[,]1)) |
51 | 50 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → II ∈
(TopOn‘(0[,]1))) |
52 | 51 | cnmptid 22376 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II)) |
53 | | 0elunit 12915 |
. . . . . 6
⊢ 0 ∈
(0[,]1) |
54 | 53 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ (0[,]1)) |
55 | 51, 51, 54 | cnmptc 22377 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
56 | | eqid 2759 |
. . . . 5
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
57 | | eqid 2759 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
58 | | eqid 2759 |
. . . . 5
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
59 | | dfii2 23598 |
. . . . 5
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
60 | | 0re 10695 |
. . . . . 6
⊢ 0 ∈
ℝ |
61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ ℝ) |
62 | | 1re 10693 |
. . . . . 6
⊢ 1 ∈
ℝ |
63 | 62 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ ℝ) |
64 | | halfre 11902 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
65 | | halfge0 11905 |
. . . . . . 7
⊢ 0 ≤ (1
/ 2) |
66 | | halflt1 11906 |
. . . . . . . 8
⊢ (1 / 2)
< 1 |
67 | 64, 62, 66 | ltleii 10815 |
. . . . . . 7
⊢ (1 / 2)
≤ 1 |
68 | | elicc01 12912 |
. . . . . . 7
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
69 | 64, 65, 67, 68 | mpbir3an 1339 |
. . . . . 6
⊢ (1 / 2)
∈ (0[,]1) |
70 | 69 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (1 / 2) ∈
(0[,]1)) |
71 | | simprl 770 |
. . . . . . 7
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2)) |
72 | 71 | oveq2d 7173 |
. . . . . 6
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 /
2))) |
73 | | 2cn 11763 |
. . . . . . 7
⊢ 2 ∈
ℂ |
74 | | 2ne0 11792 |
. . . . . . 7
⊢ 2 ≠
0 |
75 | 73, 74 | recidi 11423 |
. . . . . 6
⊢ (2
· (1 / 2)) = 1 |
76 | 72, 75 | eqtrdi 2810 |
. . . . 5
⊢ (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1) |
77 | | retopon 23480 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
78 | | iccssre 12875 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
79 | 60, 64, 78 | mp2an 691 |
. . . . . . . 8
⊢ (0[,](1 /
2)) ⊆ ℝ |
80 | | resttopon 21876 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
81 | 77, 79, 80 | mp2an 691 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
82 | 81 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
83 | 82, 51 | cnmpt1st 22383 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 2))) ×t II) Cn
((topGen‘ran (,)) ↾t (0[,](1 / 2))))) |
84 | 57 | iihalf1cn 23648 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2
· 𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
85 | 84 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
86 | | oveq2 7165 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
87 | 82, 51, 83, 82, 85, 86 | cnmpt21 22386 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 2))) ×t II) Cn
II)) |
88 | | iccssre 12875 |
. . . . . . . . 9
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
89 | 64, 62, 88 | mp2an 691 |
. . . . . . . 8
⊢ ((1 /
2)[,]1) ⊆ ℝ |
90 | | resttopon 21876 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
91 | 77, 89, 90 | mp2an 691 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
92 | 91 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
93 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ (0[,]1)) |
94 | 92, 51, 51, 93 | cnmpt2c 22385 |
. . . . 5
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 1) ∈
((((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
×t II) Cn II)) |
95 | 56, 57, 58, 59, 61, 63, 70, 51, 76, 87, 94 | cnmpopc 23644 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1)) ∈ ((II ×t II) Cn
II)) |
96 | | breq1 5040 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2))) |
97 | | oveq2 7165 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥)) |
98 | 96, 97 | ifbieq1d 4448 |
. . . . 5
⊢ (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
99 | 98 | adantr 484 |
. . . 4
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
100 | 51, 52, 55, 51, 51, 95, 99 | cnmpt12 22382 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) ∈ (II Cn II)) |
101 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 0 → 𝑥 = 0) |
102 | 101, 65 | eqbrtrdi 5076 |
. . . . . . 7
⊢ (𝑥 = 0 → 𝑥 ≤ (1 / 2)) |
103 | 102, 32 | syl 17 |
. . . . . 6
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥)) |
104 | | oveq2 7165 |
. . . . . . 7
⊢ (𝑥 = 0 → (2 · 𝑥) = (2 ·
0)) |
105 | | 2t0e0 11857 |
. . . . . . 7
⊢ (2
· 0) = 0 |
106 | 104, 105 | eqtrdi 2810 |
. . . . . 6
⊢ (𝑥 = 0 → (2 · 𝑥) = 0) |
107 | 103, 106 | eqtrd 2794 |
. . . . 5
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 0) |
108 | | eqid 2759 |
. . . . 5
⊢ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) |
109 | | c0ex 10687 |
. . . . 5
⊢ 0 ∈
V |
110 | 107, 108,
109 | fvmpt 6765 |
. . . 4
⊢ (0 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), (2 · 𝑥),
1))‘0) = 0) |
111 | 53, 110 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0) |
112 | 64, 62 | ltnlei 10813 |
. . . . . . . 8
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
113 | 66, 112 | mpbi 233 |
. . . . . . 7
⊢ ¬ 1
≤ (1 / 2) |
114 | | breq1 5040 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
115 | 113, 114 | mtbiri 330 |
. . . . . 6
⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
116 | 115, 39 | syl 17 |
. . . . 5
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1) |
117 | | 1ex 10689 |
. . . . 5
⊢ 1 ∈
V |
118 | 116, 108,
117 | fvmpt 6765 |
. . . 4
⊢ (1 ∈
(0[,]1) → ((𝑥 ∈
(0[,]1) ↦ if(𝑥 ≤
(1 / 2), (2 · 𝑥),
1))‘1) = 1) |
119 | 8, 118 | mp1i 13 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1) |
120 | 23, 100, 111, 119 | reparpht 23714 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))(
≃ph‘𝐽)𝐹) |
121 | 49, 120 | eqbrtrd 5059 |
1
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)𝐹) |