MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt2 Structured version   Visualization version   GIF version

Theorem pcopt2 24186
Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
pcopt.1 𝑃 = ((0[,]1) × {𝑌})
Assertion
Ref Expression
pcopt2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)

Proof of Theorem pcopt2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . 9 𝑃 = ((0[,]1) × {𝑌})
21fveq1i 6775 . . . . . . . 8 (𝑃‘((2 · 𝑥) − 1)) = (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1))
3 simpr 485 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) = 𝑌)
4 iiuni 24044 . . . . . . . . . . . . 13 (0[,]1) = II
5 eqid 2738 . . . . . . . . . . . . 13 𝐽 = 𝐽
64, 5cnf 22397 . . . . . . . . . . . 12 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
76adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹:(0[,]1)⟶ 𝐽)
8 1elunit 13202 . . . . . . . . . . 11 1 ∈ (0[,]1)
9 ffvelrn 6959 . . . . . . . . . . 11 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → (𝐹‘1) ∈ 𝐽)
107, 8, 9sylancl 586 . . . . . . . . . 10 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹‘1) ∈ 𝐽)
113, 10eqeltrrd 2840 . . . . . . . . 9 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑌 𝐽)
12 elii2 24099 . . . . . . . . . 10 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
13 iihalf2 24096 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1412, 13syl 17 . . . . . . . . 9 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
15 fvconst2g 7077 . . . . . . . . 9 ((𝑌 𝐽 ∧ ((2 · 𝑥) − 1) ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
1611, 14, 15syl2an 596 . . . . . . . 8 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (((0[,]1) × {𝑌})‘((2 · 𝑥) − 1)) = 𝑌)
172, 16eqtrid 2790 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = 𝑌)
18 simplr 766 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝐹‘1) = 𝑌)
1917, 18eqtr4d 2781 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2019anassrs 468 . . . . 5 ((((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → (𝑃‘((2 · 𝑥) − 1)) = (𝐹‘1))
2120ifeq2da 4491 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1))) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
2221mpteq2dva 5174 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
23 simpl 483 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 ∈ (II Cn 𝐽))
24 cntop2 22392 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
2524adantr 481 . . . . . . 7 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ Top)
26 toptopon2 22067 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2725, 26sylib 217 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐽 ∈ (TopOn‘ 𝐽))
281pcoptcl 24184 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌 𝐽) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
2927, 11, 28syl2anc 584 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌))
3029simp1d 1141 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝑃 ∈ (II Cn 𝐽))
3123, 30pcoval 24174 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝑃‘((2 · 𝑥) − 1)))))
32 iftrue 4465 . . . . . . . . 9 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
3332adantl 482 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
34 elii1 24098 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) ↔ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)))
35 iihalf1 24094 . . . . . . . . 9 (𝑥 ∈ (0[,](1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3634, 35sylbir 234 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → (2 · 𝑥) ∈ (0[,]1))
3733, 36eqeltrd 2839 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
3837ex 413 . . . . . 6 (𝑥 ∈ (0[,]1) → (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1)))
39 iffalse 4468 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
4039, 8eqeltrdi 2847 . . . . . 6 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4138, 40pm2.61d1 180 . . . . 5 (𝑥 ∈ (0[,]1) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
4241adantl 482 . . . 4 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) ∈ (0[,]1))
43 eqidd 2739 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
447feqmptd 6837 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 𝐹 = (𝑦 ∈ (0[,]1) ↦ (𝐹𝑦)))
45 fveq2 6774 . . . . 5 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))
46 fvif 6790 . . . . 5 (𝐹‘if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))
4745, 46eqtrdi 2794 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) → (𝐹𝑦) = if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1)))
4842, 43, 44, 47fmptco 7001 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐹‘1))))
4922, 31, 483eqtr4d 2788 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃) = (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))))
50 iitopon 24042 . . . . 5 II ∈ (TopOn‘(0[,]1))
5150a1i 11 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → II ∈ (TopOn‘(0[,]1)))
5251cnmptid 22812 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
53 0elunit 13201 . . . . . 6 0 ∈ (0[,]1)
5453a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ (0[,]1))
5551, 51, 54cnmptc 22813 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
56 eqid 2738 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
57 eqid 2738 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
58 eqid 2738 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
59 dfii2 24045 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
60 0re 10977 . . . . . 6 0 ∈ ℝ
6160a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 0 ∈ ℝ)
62 1re 10975 . . . . . 6 1 ∈ ℝ
6362a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ ℝ)
64 halfre 12187 . . . . . . 7 (1 / 2) ∈ ℝ
65 halfge0 12190 . . . . . . 7 0 ≤ (1 / 2)
66 halflt1 12191 . . . . . . . 8 (1 / 2) < 1
6764, 62, 66ltleii 11098 . . . . . . 7 (1 / 2) ≤ 1
68 elicc01 13198 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
6964, 65, 67, 68mpbir3an 1340 . . . . . 6 (1 / 2) ∈ (0[,]1)
7069a1i 11 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (1 / 2) ∈ (0[,]1))
71 simprl 768 . . . . . . 7 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
7271oveq2d 7291 . . . . . 6 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 2)))
73 2cn 12048 . . . . . . 7 2 ∈ ℂ
74 2ne0 12077 . . . . . . 7 2 ≠ 0
7573, 74recidi 11706 . . . . . 6 (2 · (1 / 2)) = 1
7672, 75eqtrdi 2794 . . . . 5 (((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = 1)
77 retopon 23927 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
78 iccssre 13161 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
7960, 64, 78mp2an 689 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
80 resttopon 22312 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8177, 79, 80mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
8281a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
8382, 51cnmpt1st 22819 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
8457iihalf1cn 24095 . . . . . . 7 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
8584a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
86 oveq2 7283 . . . . . 6 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
8782, 51, 83, 82, 85, 86cnmpt21 22822 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
88 iccssre 13161 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
8964, 62, 88mp2an 689 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
90 resttopon 22312 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
9177, 89, 90mp2an 689 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
9291a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
938a1i 11 . . . . . 6 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → 1 ∈ (0[,]1))
9492, 51, 51, 93cnmpt2c 22821 . . . . 5 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 1) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
9556, 57, 58, 59, 61, 63, 70, 51, 76, 87, 94cnmpopc 24091 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1)) ∈ ((II ×t II) Cn II))
96 breq1 5077 . . . . . 6 (𝑦 = 𝑥 → (𝑦 ≤ (1 / 2) ↔ 𝑥 ≤ (1 / 2)))
97 oveq2 7283 . . . . . 6 (𝑦 = 𝑥 → (2 · 𝑦) = (2 · 𝑥))
9896, 97ifbieq1d 4483 . . . . 5 (𝑦 = 𝑥 → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
9998adantr 481 . . . 4 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), (2 · 𝑦), 1) = if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
10051, 52, 55, 51, 51, 95, 99cnmpt12 22818 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) ∈ (II Cn II))
101 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
102101, 65eqbrtrdi 5113 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
103102, 32syl 17 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = (2 · 𝑥))
104 oveq2 7283 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
105 2t0e0 12142 . . . . . . 7 (2 · 0) = 0
106104, 105eqtrdi 2794 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
107103, 106eqtrd 2778 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 0)
108 eqid 2738 . . . . 5 (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))
109 c0ex 10969 . . . . 5 0 ∈ V
110107, 108, 109fvmpt 6875 . . . 4 (0 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11153, 110mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘0) = 0)
11264, 62ltnlei 11096 . . . . . . . 8 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
11366, 112mpbi 229 . . . . . . 7 ¬ 1 ≤ (1 / 2)
114 breq1 5077 . . . . . . 7 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
115113, 114mtbiri 327 . . . . . 6 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
116115, 39syl 17 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1) = 1)
117 1ex 10971 . . . . 5 1 ∈ V
118116, 108, 117fvmpt 6875 . . . 4 (1 ∈ (0[,]1) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
1198, 118mp1i 13 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → ((𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1))‘1) = 1)
12023, 100, 111, 119reparpht 24161 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹 ∘ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (2 · 𝑥), 1)))( ≃ph𝐽)𝐹)
12149, 120eqbrtrd 5096 1 ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝𝐽)𝑃)( ≃ph𝐽)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887  ifcif 4459  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  (,)cioo 13079  [,]cicc 13082  t crest 17131  topGenctg 17148  Topctop 22042  TopOnctopon 22059   Cn ccn 22375  IIcii 24038  phcphtpc 24132  *𝑝cpco 24163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155  df-pco 24168
This theorem is referenced by:  pcophtb  24192  pi1xfrcnvlem  24219
  Copyright terms: Public domain W3C validator