MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem3 Structured version   Visualization version   GIF version

Theorem ttukeylem3 9922
Description: Lemma for ttukey 9929. (Contributed by Mario Carneiro, 11-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem3
StepHypRef Expression
1 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
21tfr2 8017 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
32adantl 485 . 2 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
4 eqidd 2799 . . 3 ((𝜑𝐶 ∈ On) → (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
5 simpr 488 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝑧 = (𝐺𝐶))
65dmeqd 5738 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = dom (𝐺𝐶))
71tfr1 8016 . . . . . . . . 9 𝐺 Fn On
8 onss 7485 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ⊆ On)
98ad2antlr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝐶 ⊆ On)
10 fnssres 6442 . . . . . . . . 9 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
117, 9, 10sylancr 590 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐺𝐶) Fn 𝐶)
1211fndmd 6427 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom (𝐺𝐶) = 𝐶)
136, 12eqtrd 2833 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1413unieqd 4814 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1513, 14eqeq12d 2814 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = dom 𝑧𝐶 = 𝐶))
1613eqeq1d 2800 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = ∅ ↔ 𝐶 = ∅))
175rneqd 5772 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = ran (𝐺𝐶))
18 df-ima 5532 . . . . . . . 8 (𝐺𝐶) = ran (𝐺𝐶)
1917, 18eqtr4di 2851 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2019unieqd 4814 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2116, 20ifbieq2d 4450 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = ∅, 𝐵, ran 𝑧) = if(𝐶 = ∅, 𝐵, (𝐺𝐶)))
225, 14fveq12d 6652 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝑧 dom 𝑧) = ((𝐺𝐶)‘ 𝐶))
2314fveq2d 6649 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐹 dom 𝑧) = (𝐹 𝐶))
2423sneqd 4537 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → {(𝐹 dom 𝑧)} = {(𝐹 𝐶)})
2522, 24uneq12d 4091 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) = (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}))
2625eleq1d 2874 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴 ↔ (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
27 eqidd 2799 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ∅ = ∅)
2826, 24, 27ifbieq12d 4452 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅) = if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
2922, 28uneq12d 4091 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)) = (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
3015, 21, 29ifbieq12d 4452 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
31 onuni 7488 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ∈ On)
3231ad3antlr 730 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
33 sucidg 6237 . . . . . . . . 9 ( 𝐶 ∈ On → 𝐶 ∈ suc 𝐶)
3432, 33syl 17 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
35 eloni 6169 . . . . . . . . . . 11 (𝐶 ∈ On → Ord 𝐶)
3635ad2antlr 726 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → Ord 𝐶)
37 orduniorsuc 7525 . . . . . . . . . 10 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
3836, 37syl 17 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
3938orcanai 1000 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
4034, 39eleqtrrd 2893 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
4140fvresd 6665 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4241uneq1d 4089 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) = ((𝐺 𝐶) ∪ {(𝐹 𝐶)}))
4342eleq1d 2874 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴 ↔ ((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
4443ifbid 4447 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) = if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
4541, 44uneq12d 4091 . . . . 5 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) = ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
4645ifeq2da 4456 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
4730, 46eqtrd 2833 . . 3 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
48 fnfun 6423 . . . . 5 (𝐺 Fn On → Fun 𝐺)
497, 48ax-mp 5 . . . 4 Fun 𝐺
50 simpr 488 . . . 4 ((𝜑𝐶 ∈ On) → 𝐶 ∈ On)
51 resfunexg 6955 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5249, 50, 51sylancr 590 . . 3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) ∈ V)
53 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
5453elexd 3461 . . . . 5 (𝜑𝐵 ∈ V)
55 funimaexg 6410 . . . . . . 7 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5649, 55mpan 689 . . . . . 6 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
5756uniexd 7448 . . . . 5 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
58 ifcl 4469 . . . . 5 ((𝐵 ∈ V ∧ (𝐺𝐶) ∈ V) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
5954, 57, 58syl2an 598 . . . 4 ((𝜑𝐶 ∈ On) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
60 fvex 6658 . . . . 5 (𝐺 𝐶) ∈ V
61 snex 5297 . . . . . 6 {(𝐹 𝐶)} ∈ V
62 0ex 5175 . . . . . 6 ∅ ∈ V
6361, 62ifex 4473 . . . . 5 if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) ∈ V
6460, 63unex 7449 . . . 4 ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V
65 ifcl 4469 . . . 4 ((if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V ∧ ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
6659, 64, 65sylancl 589 . . 3 ((𝜑𝐶 ∈ On) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
674, 47, 52, 66fvmptd 6752 . 2 ((𝜑𝐶 ∈ On) → ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
683, 67eqtrd 2833 1 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Ord word 6158  Oncon0 6159  suc csuc 6161  Fun wfun 6318   Fn wfn 6319  1-1-ontowf1o 6323  cfv 6324  recscrecs 7990  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  ttukeylem4  9923  ttukeylem5  9924  ttukeylem6  9925  ttukeylem7  9926
  Copyright terms: Public domain W3C validator