MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem3 Structured version   Visualization version   GIF version

Theorem ttukeylem3 10198
Description: Lemma for ttukey 10205. (Contributed by Mario Carneiro, 11-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem3
StepHypRef Expression
1 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
21tfr2 8200 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
32adantl 481 . 2 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)))
4 eqidd 2739 . . 3 ((𝜑𝐶 ∈ On) → (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))) = (𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
5 simpr 484 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝑧 = (𝐺𝐶))
65dmeqd 5803 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = dom (𝐺𝐶))
71tfr1 8199 . . . . . . . . 9 𝐺 Fn On
8 onss 7611 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ⊆ On)
98ad2antlr 723 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → 𝐶 ⊆ On)
10 fnssres 6539 . . . . . . . . 9 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
117, 9, 10sylancr 586 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐺𝐶) Fn 𝐶)
1211fndmd 6522 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom (𝐺𝐶) = 𝐶)
136, 12eqtrd 2778 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1413unieqd 4850 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → dom 𝑧 = 𝐶)
1513, 14eqeq12d 2754 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = dom 𝑧𝐶 = 𝐶))
1613eqeq1d 2740 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (dom 𝑧 = ∅ ↔ 𝐶 = ∅))
175rneqd 5836 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = ran (𝐺𝐶))
18 df-ima 5593 . . . . . . . 8 (𝐺𝐶) = ran (𝐺𝐶)
1917, 18eqtr4di 2797 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2019unieqd 4850 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ran 𝑧 = (𝐺𝐶))
2116, 20ifbieq2d 4482 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = ∅, 𝐵, ran 𝑧) = if(𝐶 = ∅, 𝐵, (𝐺𝐶)))
225, 14fveq12d 6763 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝑧 dom 𝑧) = ((𝐺𝐶)‘ 𝐶))
2314fveq2d 6760 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐹 dom 𝑧) = (𝐹 𝐶))
2423sneqd 4570 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → {(𝐹 dom 𝑧)} = {(𝐹 𝐶)})
2522, 24uneq12d 4094 . . . . . . . 8 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) = (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}))
2625eleq1d 2823 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴 ↔ (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
27 eqidd 2739 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ∅ = ∅)
2826, 24, 27ifbieq12d 4484 . . . . . 6 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅) = if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
2922, 28uneq12d 4094 . . . . 5 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)) = (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
3015, 21, 29ifbieq12d 4484 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
31 onuni 7615 . . . . . . . . . 10 (𝐶 ∈ On → 𝐶 ∈ On)
3231ad3antlr 727 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
33 sucidg 6329 . . . . . . . . 9 ( 𝐶 ∈ On → 𝐶 ∈ suc 𝐶)
3432, 33syl 17 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
35 eloni 6261 . . . . . . . . . . 11 (𝐶 ∈ On → Ord 𝐶)
3635ad2antlr 723 . . . . . . . . . 10 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → Ord 𝐶)
37 orduniorsuc 7652 . . . . . . . . . 10 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
3836, 37syl 17 . . . . . . . . 9 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
3938orcanai 999 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
4034, 39eleqtrrd 2842 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
4140fvresd 6776 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
4241uneq1d 4092 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) = ((𝐺 𝐶) ∪ {(𝐹 𝐶)}))
4342eleq1d 2823 . . . . . . 7 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴 ↔ ((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴))
4443ifbid 4479 . . . . . 6 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) = if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))
4541, 44uneq12d 4094 . . . . 5 ((((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) ∧ ¬ 𝐶 = 𝐶) → (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) = ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)))
4645ifeq2da 4488 . . . 4 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), (((𝐺𝐶)‘ 𝐶) ∪ if((((𝐺𝐶)‘ 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
4730, 46eqtrd 2778 . . 3 (((𝜑𝐶 ∈ On) ∧ 𝑧 = (𝐺𝐶)) → if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
48 fnfun 6517 . . . . 5 (𝐺 Fn On → Fun 𝐺)
497, 48ax-mp 5 . . . 4 Fun 𝐺
50 simpr 484 . . . 4 ((𝜑𝐶 ∈ On) → 𝐶 ∈ On)
51 resfunexg 7073 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5249, 50, 51sylancr 586 . . 3 ((𝜑𝐶 ∈ On) → (𝐺𝐶) ∈ V)
53 ttukeylem.2 . . . . . 6 (𝜑𝐵𝐴)
5453elexd 3442 . . . . 5 (𝜑𝐵 ∈ V)
55 funimaexg 6504 . . . . . . 7 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
5649, 55mpan 686 . . . . . 6 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
5756uniexd 7573 . . . . 5 (𝐶 ∈ On → (𝐺𝐶) ∈ V)
58 ifcl 4501 . . . . 5 ((𝐵 ∈ V ∧ (𝐺𝐶) ∈ V) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
5954, 57, 58syl2an 595 . . . 4 ((𝜑𝐶 ∈ On) → if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V)
60 fvex 6769 . . . . 5 (𝐺 𝐶) ∈ V
61 snex 5349 . . . . . 6 {(𝐹 𝐶)} ∈ V
62 0ex 5226 . . . . . 6 ∅ ∈ V
6361, 62ifex 4506 . . . . 5 if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅) ∈ V
6460, 63unex 7574 . . . 4 ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V
65 ifcl 4501 . . . 4 ((if(𝐶 = ∅, 𝐵, (𝐺𝐶)) ∈ V ∧ ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅)) ∈ V) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
6659, 64, 65sylancl 585 . . 3 ((𝜑𝐶 ∈ On) → if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))) ∈ V)
674, 47, 52, 66fvmptd 6864 . 2 ((𝜑𝐶 ∈ On) → ((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅))))‘(𝐺𝐶)) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
683, 67eqtrd 2778 1 ((𝜑𝐶 ∈ On) → (𝐺𝐶) = if(𝐶 = 𝐶, if(𝐶 = ∅, 𝐵, (𝐺𝐶)), ((𝐺 𝐶) ∪ if(((𝐺 𝐶) ∪ {(𝐹 𝐶)}) ∈ 𝐴, {(𝐹 𝐶)}, ∅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Ord word 6250  Oncon0 6251  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  1-1-ontowf1o 6417  cfv 6418  recscrecs 8172  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by:  ttukeylem4  10199  ttukeylem5  10200  ttukeylem6  10201  ttukeylem7  10202
  Copyright terms: Public domain W3C validator