| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem76.ch |
. . 3
⊢ (𝜒 ↔ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 2 | | eqid 2737 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) |
| 3 | | eqid 2737 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) |
| 4 | | eqid 2737 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| 5 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
| 6 | 1, 5 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝜒 → 𝜑) |
| 7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝜑) |
| 8 | | ioossicc 13473 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 9 | | fourierdlem76.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 10 | 9 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 11 | 6, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → 𝐴 ∈
ℝ*) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ∈
ℝ*) |
| 13 | | fourierdlem76.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 14 | 13 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 15 | 6, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → 𝐵 ∈
ℝ*) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐵 ∈
ℝ*) |
| 17 | | elioore 13417 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → 𝑠 ∈ ℝ) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℝ) |
| 19 | 6, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐴 ∈ ℝ) |
| 20 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ∈ ℝ) |
| 21 | | fourierdlem76.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
| 22 | | prfi 9363 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝐴, 𝐵} ∈ Fin |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| 24 | | fzfid 14014 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
| 25 | | fourierdlem76.q |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| 26 | 25 | rnmptfi 45176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((0...𝑀) ∈ Fin
→ ran 𝑄 ∈
Fin) |
| 27 | | infi 9302 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ran
𝑄 ∈ Fin → (ran
𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
| 28 | 24, 26, 27 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
| 29 | | unfi 9211 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝐴, 𝐵} ∈ Fin ∧ (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
| 30 | 23, 28, 29 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
| 31 | 21, 30 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 32 | | prssg 4819 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
| 33 | 9, 13, 32 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
| 34 | 9, 13, 33 | mpbi2and 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
| 35 | | inss2 4238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵) |
| 36 | | ioossre 13448 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 37 | 35, 36 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ) |
| 39 | 34, 38 | unssd 4192 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ ℝ) |
| 40 | 21, 39 | eqsstrid 4022 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
| 41 | | fourierdlem76.s |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) |
| 42 | | fourierdlem76.n |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = ((♯‘𝑇) − 1) |
| 43 | 31, 40, 41, 42 | fourierdlem36 46158 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
| 44 | 6, 43 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
| 45 | | isof1o 7343 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
| 46 | | f1of 6848 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)⟶𝑇) |
| 47 | 44, 45, 46 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑆:(0...𝑁)⟶𝑇) |
| 48 | 6, 40 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑇 ⊆ ℝ) |
| 49 | 47, 48 | fssd 6753 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → 𝑆:(0...𝑁)⟶ℝ) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑆:(0...𝑁)⟶ℝ) |
| 51 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑗 ∈ (0..^𝑁)) |
| 52 | 1, 51 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑗 ∈ (0..^𝑁)) |
| 53 | | elfzofz 13715 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → 𝑗 ∈ (0...𝑁)) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑗 ∈ (0...𝑁)) |
| 56 | 50, 55 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) ∈ ℝ) |
| 57 | 43, 45, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝑇) |
| 58 | | frn 6743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆:(0...𝑁)⟶𝑇 → ran 𝑆 ⊆ 𝑇) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝑆 ⊆ 𝑇) |
| 60 | 9 | leidd 11829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 61 | | fourierdlem76.altb |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐴 < 𝐵) |
| 62 | 9, 13, 61 | ltled 11409 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 63 | 9, 13, 9, 60, 62 | eliccd 45517 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 64 | 13 | leidd 11829 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ≤ 𝐵) |
| 65 | 9, 13, 13, 62, 64 | eliccd 45517 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 66 | | prssg 4819 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
| 67 | 9, 13, 66 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
| 68 | 63, 65, 67 | mpbi2and 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐴[,]𝐵)) |
| 69 | 35, 8 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
| 71 | 68, 70 | unssd 4192 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ (𝐴[,]𝐵)) |
| 72 | 21, 71 | eqsstrid 4022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) |
| 73 | 59, 72 | sstrd 3994 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝑆 ⊆ (𝐴[,]𝐵)) |
| 74 | 6, 73 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ran 𝑆 ⊆ (𝐴[,]𝐵)) |
| 75 | | ffun 6739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆:(0...𝑁)⟶ℝ → Fun 𝑆) |
| 76 | 49, 75 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → Fun 𝑆) |
| 77 | | fdm 6745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆:(0...𝑁)⟶ℝ → dom 𝑆 = (0...𝑁)) |
| 78 | 49, 77 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → dom 𝑆 = (0...𝑁)) |
| 79 | 78 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (0...𝑁) = dom 𝑆) |
| 80 | 54, 79 | eleqtrd 2843 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑗 ∈ dom 𝑆) |
| 81 | | fvelrn 7096 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑆 ∧ 𝑗 ∈ dom 𝑆) → (𝑆‘𝑗) ∈ ran 𝑆) |
| 82 | 76, 80, 81 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘𝑗) ∈ ran 𝑆) |
| 83 | 74, 82 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) |
| 84 | | iccgelb 13443 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘𝑗)) |
| 85 | 11, 15, 83, 84 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐴 ≤ (𝑆‘𝑗)) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ≤ (𝑆‘𝑗)) |
| 87 | 56 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) ∈
ℝ*) |
| 88 | | fzofzp1 13803 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
| 89 | 52, 88 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑗 + 1) ∈ (0...𝑁)) |
| 90 | 49, 89 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 91 | 90 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
| 93 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 94 | | ioogtlb 45508 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) < 𝑠) |
| 95 | 87, 92, 93, 94 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) < 𝑠) |
| 96 | 20, 56, 18, 86, 95 | lelttrd 11419 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 < 𝑠) |
| 97 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 98 | 6, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐵 ∈ ℝ) |
| 99 | 98 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐵 ∈ ℝ) |
| 100 | | iooltub 45523 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑆‘(𝑗 + 1))) |
| 101 | 87, 92, 93, 100 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑆‘(𝑗 + 1))) |
| 102 | 89, 79 | eleqtrd 2843 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑗 + 1) ∈ dom 𝑆) |
| 103 | | fvelrn 7096 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑆 ∧ (𝑗 + 1) ∈ dom 𝑆) → (𝑆‘(𝑗 + 1)) ∈ ran 𝑆) |
| 104 | 76, 102, 103 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ran 𝑆) |
| 105 | 74, 104 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) |
| 106 | | iccleub 13442 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
| 107 | 11, 15, 105, 106 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
| 109 | 18, 97, 99, 101, 108 | ltletrd 11421 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < 𝐵) |
| 110 | 12, 16, 18, 96, 109 | eliood 45511 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (𝐴(,)𝐵)) |
| 111 | 8, 110 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 112 | | fourierdlem76.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 113 | 112 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ) |
| 114 | | fourierdlem76.xre |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 115 | 114 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
| 116 | 9, 13 | iccssred 13474 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 117 | 116 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
| 118 | 115, 117 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 119 | 113, 118 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 120 | 7, 111, 119 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 121 | 120 | recnd 11289 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 122 | | fourierdlem76.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 123 | 122 | recnd 11289 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 124 | 6, 123 | syl 17 |
. . . . . . . 8
⊢ (𝜒 → 𝐶 ∈ ℂ) |
| 125 | 124 | adantr 480 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐶 ∈ ℂ) |
| 126 | 121, 125 | subcld 11620 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 127 | | ioossre 13448 |
. . . . . . . . 9
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ |
| 128 | 127 | a1i 11 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ) |
| 129 | 128 | sselda 3983 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℝ) |
| 130 | 129 | recnd 11289 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℂ) |
| 131 | | nne 2944 |
. . . . . . . . . . . 12
⊢ (¬
𝑠 ≠ 0 ↔ 𝑠 = 0) |
| 132 | 131 | biimpi 216 |
. . . . . . . . . . 11
⊢ (¬
𝑠 ≠ 0 → 𝑠 = 0) |
| 133 | 132 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (¬
𝑠 ≠ 0 → 0 = 𝑠) |
| 134 | 133 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 = 𝑠) |
| 135 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 136 | 135 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 137 | 134, 136 | eqeltrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵)) |
| 138 | | fourierdlem76.n0 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 139 | 138 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 140 | 137, 139 | condan 818 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) |
| 141 | 7, 111, 140 | syl2anc 584 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ≠ 0) |
| 142 | 126, 130,
141 | divcld 12043 |
. . . . 5
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ) |
| 143 | | 2cnd 12344 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈
ℂ) |
| 144 | 130 | halfcld 12511 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / 2) ∈ ℂ) |
| 145 | 144 | sincld 16166 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℂ) |
| 146 | 143, 145 | mulcld 11281 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 147 | 17 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → 𝑠 ∈ ℂ) |
| 148 | 147 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℂ) |
| 149 | 148 | halfcld 12511 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / 2) ∈ ℂ) |
| 150 | 149 | sincld 16166 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℂ) |
| 151 | | 2ne0 12370 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 152 | 151 | a1i 11 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ≠ 0) |
| 153 | | fourierdlem76.ab |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 154 | 6, 153 | syl 17 |
. . . . . . . . . 10
⊢ (𝜒 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 155 | 154 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 156 | 155, 111 | sseldd 3984 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (-π[,]π)) |
| 157 | | fourierdlem44 46166 |
. . . . . . . 8
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
| 158 | 156, 141,
157 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ≠ 0) |
| 159 | 143, 150,
152, 158 | mulne0d 11915 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
| 160 | 130, 146,
159 | divcld 12043 |
. . . . 5
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ) |
| 161 | | eqid 2737 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) |
| 162 | | eqid 2737 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) |
| 163 | 141 | neneqd 2945 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ 𝑠 = 0) |
| 164 | | velsn 4642 |
. . . . . . . 8
⊢ (𝑠 ∈ {0} ↔ 𝑠 = 0) |
| 165 | 163, 164 | sylnibr 329 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ 𝑠 ∈ {0}) |
| 166 | 130, 165 | eldifd 3962 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (ℂ ∖
{0})) |
| 167 | | eqid 2737 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) |
| 168 | | eqid 2737 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) |
| 169 | | elfzofz 13715 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 170 | 169 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 171 | | pire 26500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ π
∈ ℝ |
| 172 | 171 | renegcli 11570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -π
∈ ℝ |
| 173 | 172 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → -π ∈
ℝ) |
| 174 | 173, 114 | readdcld 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (-π + 𝑋) ∈ ℝ) |
| 175 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → π ∈
ℝ) |
| 176 | 175, 114 | readdcld 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (π + 𝑋) ∈ ℝ) |
| 177 | 174, 176 | iccssred 13474 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
| 178 | 177 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
| 179 | | fourierdlem76.p |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 180 | | fourierdlem76.m |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 181 | | fourierdlem76.v |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| 182 | 179, 180,
181 | fourierdlem15 46137 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
| 183 | 182 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
| 184 | 183, 170 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
| 185 | 178, 184 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
| 186 | 114 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
| 187 | 185, 186 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
| 188 | 25 | fvmpt2 7027 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
| 189 | 170, 187,
188 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
| 190 | 189, 187 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 191 | 190 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 192 | 191 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 193 | 1, 192 | sylbi 217 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘𝑖) ∈ ℝ) |
| 194 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
| 195 | 194 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
| 196 | 195 | cbvmptv 5255 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
| 197 | 25, 196 | eqtri 2765 |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
| 198 | 197 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
| 199 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑖 + 1) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
| 200 | 199 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 201 | 200 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 202 | | fzofzp1 13803 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 203 | 202 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 204 | 183, 203 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
| 205 | 178, 204 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
| 206 | 205, 186 | resubcld 11691 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
| 207 | 198, 201,
203, 206 | fvmptd 7023 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 208 | 207, 206 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 209 | 208 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 210 | 209 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 211 | 1, 210 | sylbi 217 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 212 | 179 | fourierdlem2 46124 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 213 | 180, 212 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 214 | 181, 213 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 215 | 214 | simprrd 774 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
| 216 | 215 | r19.21bi 3251 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
| 217 | 185, 205,
186, 216 | ltsub1dd 11875 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 218 | 217, 189,
207 | 3brtr4d 5175 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 219 | 218 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 220 | 219 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 221 | 1, 220 | sylbi 217 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 222 | 1 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 223 | 222 | simplrd 770 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑖 ∈ (0..^𝑀)) |
| 224 | 6, 223, 185 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℝ) |
| 225 | 224 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘𝑖) ∈
ℝ*) |
| 226 | 225 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
| 227 | 6, 223, 205 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
| 228 | 227 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
| 229 | 228 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
| 230 | 6, 114 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑋 ∈ ℝ) |
| 231 | 230 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
| 232 | | elioore 13417 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
| 233 | 232 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
| 234 | 231, 233 | readdcld 11290 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
| 235 | 6, 223, 189 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
| 236 | 235 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘𝑖)) = (𝑋 + ((𝑉‘𝑖) − 𝑋))) |
| 237 | 230 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝑋 ∈ ℂ) |
| 238 | 224 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℂ) |
| 239 | 237, 238 | pncan3d 11623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + ((𝑉‘𝑖) − 𝑋)) = (𝑉‘𝑖)) |
| 240 | 236, 239 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
| 241 | 240 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
| 242 | 193 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 243 | 193 | rexrd 11311 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑖) ∈
ℝ*) |
| 244 | 243 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 245 | 211 | rexrd 11311 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 246 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 247 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 248 | | ioogtlb 45508 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
| 249 | 244, 246,
247, 248 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
| 250 | 242, 233,
231, 249 | ltadd2dd 11420 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘𝑖)) < (𝑋 + 𝑠)) |
| 251 | 241, 250 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
| 252 | 211 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 253 | | iooltub 45523 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
| 254 | 244, 246,
247, 253 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
| 255 | 233, 252,
231, 254 | ltadd2dd 11420 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
| 256 | 6, 223, 207 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
| 257 | 256 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋))) |
| 258 | 227 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
| 259 | 237, 258 | pncan3d 11623 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1))) |
| 260 | 257, 259 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
| 261 | 260 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
| 262 | 255, 261 | breqtrd 5169 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1))) |
| 263 | 226, 229,
234, 251, 262 | eliood 45511 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
| 264 | | fvres 6925 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
| 265 | 263, 264 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
| 266 | 265 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) |
| 267 | 266 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))) |
| 268 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ |
| 269 | 268 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ) |
| 270 | | fourierdlem76.fcn |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
| 271 | 6, 223, 270 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
| 272 | | ioosscn 13449 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
| 273 | 272 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
| 274 | 269, 271,
273, 237, 263 | fourierdlem23 46145 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 275 | 267, 274 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
| 276 | 6, 112 | syl 17 |
. . . . . . . . . 10
⊢ (𝜒 → 𝐹:ℝ⟶ℝ) |
| 277 | | ioossre 13448 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
| 278 | 277 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
| 279 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) |
| 280 | | ioossre 13448 |
. . . . . . . . . . 11
⊢ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ |
| 281 | 280 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ) |
| 282 | 233, 254 | ltned 11397 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1))) |
| 283 | | fourierdlem76.l |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
| 284 | 6, 223, 283 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
| 285 | 260 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1)))) |
| 286 | 285 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
| 287 | 284, 286 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (𝜒 → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
| 288 | 211 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 289 | 276, 230,
278, 279, 263, 281, 282, 287, 288 | fourierdlem53 46174 |
. . . . . . . . 9
⊢ (𝜒 → 𝐿 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
| 290 | 49, 54 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
| 291 | | elfzoelz 13699 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) |
| 292 | | zre 12617 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℝ) |
| 293 | 52, 291, 292 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑗 ∈ ℝ) |
| 294 | 293 | ltp1d 12198 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑗 < (𝑗 + 1)) |
| 295 | | isorel 7346 |
. . . . . . . . . . 11
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝑗 + 1) ∈ (0...𝑁))) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
| 296 | 44, 54, 89, 295 | syl12anc 837 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
| 297 | 294, 296 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜒 → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 298 | 1 | simprbi 496 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 299 | | eqid 2737 |
. . . . . . . . 9
⊢ if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) |
| 300 | | eqid 2737 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
| 301 | 193, 211,
221, 275, 289, 290, 90, 297, 298, 299, 300 | fourierdlem33 46155 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) ∈ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
| 302 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
| 303 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → 𝑠 = (𝑆‘(𝑗 + 1))) |
| 304 | 303 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝑆‘(𝑗 + 1)))) |
| 305 | 304 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 306 | 243 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
| 307 | 245 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 308 | 90 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 309 | 193, 211,
290, 90, 297, 298 | fourierdlem10 46132 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → ((𝑄‘𝑖) ≤ (𝑆‘𝑗) ∧ (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1)))) |
| 310 | 309 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑄‘𝑖) ≤ (𝑆‘𝑗)) |
| 311 | 193, 290,
90, 310, 297 | lelttrd 11419 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑄‘𝑖) < (𝑆‘(𝑗 + 1))) |
| 312 | 311 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) < (𝑆‘(𝑗 + 1))) |
| 313 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 314 | 309 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
| 315 | 314 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
| 316 | | neqne 2948 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) → (𝑆‘(𝑗 + 1)) ≠ (𝑄‘(𝑖 + 1))) |
| 317 | 316 | necomd 2996 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ (𝑆‘(𝑗 + 1))) |
| 318 | 317 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ (𝑆‘(𝑗 + 1))) |
| 319 | 308, 313,
315, 318 | leneltd 11415 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) < (𝑄‘(𝑖 + 1))) |
| 320 | 306, 307,
308, 312, 319 | eliood 45511 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 321 | 230, 90 | readdcld 11290 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑋 + (𝑆‘(𝑗 + 1))) ∈ ℝ) |
| 322 | 276, 321 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))) ∈ ℝ) |
| 323 | 322 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))) ∈ ℝ) |
| 324 | 302, 305,
320, 323 | fvmptd 7023 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1))) = (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 325 | 324 | ifeq2da 4558 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))) |
| 326 | 298 | resmptd 6058 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
| 327 | 326 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝜒 → (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘(𝑗 + 1)))) |
| 328 | 301, 325,
327 | 3eltr3d 2855 |
. . . . . . 7
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘(𝑗 + 1)))) |
| 329 | | ax-resscn 11212 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
| 330 | 128, 329 | sstrdi 3996 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℂ) |
| 331 | 90 | recnd 11289 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℂ) |
| 332 | 168, 330,
124, 331 | constlimc 45639 |
. . . . . . 7
⊢ (𝜒 → 𝐶 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) limℂ (𝑆‘(𝑗 + 1)))) |
| 333 | 167, 168,
161, 121, 125, 328, 332 | sublimc 45667 |
. . . . . 6
⊢ (𝜒 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) limℂ (𝑆‘(𝑗 + 1)))) |
| 334 | 330, 162,
331 | idlimc 45641 |
. . . . . 6
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) limℂ (𝑆‘(𝑗 + 1)))) |
| 335 | 6, 105 | jca 511 |
. . . . . . 7
⊢ (𝜒 → (𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))) |
| 336 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (𝑠 ∈ (𝐴[,]𝐵) ↔ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))) |
| 337 | 336 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)))) |
| 338 | | neeq1 3003 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (𝑠 ≠ 0 ↔ (𝑆‘(𝑗 + 1)) ≠ 0)) |
| 339 | 337, 338 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) ↔ ((𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≠ 0))) |
| 340 | 339, 140 | vtoclg 3554 |
. . . . . . 7
⊢ ((𝑆‘(𝑗 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≠ 0)) |
| 341 | 90, 335, 340 | sylc 65 |
. . . . . 6
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≠ 0) |
| 342 | 161, 162,
2, 126, 166, 333, 334, 341, 141 | divlimc 45671 |
. . . . 5
⊢ (𝜒 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) limℂ (𝑆‘(𝑗 + 1)))) |
| 343 | | eqid 2737 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) |
| 344 | 143, 150 | mulcld 11281 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 345 | 159 | neneqd 2945 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ (2 ·
(sin‘(𝑠 / 2))) =
0) |
| 346 | | 2re 12340 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 347 | 346 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈
ℝ) |
| 348 | 17 | rehalfcld 12513 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (𝑠 / 2) ∈ ℝ) |
| 349 | 348 | resincld 16179 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (sin‘(𝑠 / 2)) ∈ ℝ) |
| 350 | 349 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℝ) |
| 351 | 347, 350 | remulcld 11291 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℝ) |
| 352 | | elsng 4640 |
. . . . . . . . 9
⊢ ((2
· (sin‘(𝑠 /
2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 ·
(sin‘(𝑠 / 2))) =
0)) |
| 353 | 351, 352 | syl 17 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((2 ·
(sin‘(𝑠 / 2))) ∈
{0} ↔ (2 · (sin‘(𝑠 / 2))) = 0)) |
| 354 | 345, 353 | mtbird 325 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ (2 ·
(sin‘(𝑠 / 2))) ∈
{0}) |
| 355 | 344, 354 | eldifd 3962 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖
{0})) |
| 356 | | eqid 2737 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) |
| 357 | | eqid 2737 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) |
| 358 | | 2cnd 12344 |
. . . . . . . 8
⊢ (𝜒 → 2 ∈
ℂ) |
| 359 | 356, 330,
358, 331 | constlimc 45639 |
. . . . . . 7
⊢ (𝜒 → 2 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) limℂ
(𝑆‘(𝑗 + 1)))) |
| 360 | 348 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) ≠ ((𝑆‘(𝑗 + 1)) / 2))) → (𝑠 / 2) ∈ ℝ) |
| 361 | | recn 11245 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 362 | 361 | sincld 16166 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(sin‘𝑥) ∈
ℂ) |
| 363 | 362 | adantl 481 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈
ℂ) |
| 364 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) |
| 365 | | 2cn 12341 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
| 366 | | eldifsn 4786 |
. . . . . . . . . . 11
⊢ (2 ∈
(ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠
0)) |
| 367 | 365, 151,
366 | mpbir2an 711 |
. . . . . . . . . 10
⊢ 2 ∈
(ℂ ∖ {0}) |
| 368 | 367 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈ (ℂ ∖
{0})) |
| 369 | 151 | a1i 11 |
. . . . . . . . 9
⊢ (𝜒 → 2 ≠ 0) |
| 370 | 162, 356,
364, 148, 368, 334, 359, 369, 152 | divlimc 45671 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) limℂ (𝑆‘(𝑗 + 1)))) |
| 371 | | sinf 16160 |
. . . . . . . . . . . . . 14
⊢
sin:ℂ⟶ℂ |
| 372 | 371 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ sin:ℂ⟶ℂ) |
| 373 | 329 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ℝ ⊆ ℂ) |
| 374 | 372, 373 | feqresmpt 6978 |
. . . . . . . . . . . 12
⊢ (⊤
→ (sin ↾ ℝ) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))) |
| 375 | 374 | mptru 1547 |
. . . . . . . . . . 11
⊢ (sin
↾ ℝ) = (𝑥
∈ ℝ ↦ (sin‘𝑥)) |
| 376 | | resincncf 45890 |
. . . . . . . . . . 11
⊢ (sin
↾ ℝ) ∈ (ℝ–cn→ℝ) |
| 377 | 375, 376 | eqeltrri 2838 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
(sin‘𝑥)) ∈
(ℝ–cn→ℝ) |
| 378 | 377 | a1i 11 |
. . . . . . . . 9
⊢ (𝜒 → (𝑥 ∈ ℝ ↦ (sin‘𝑥)) ∈ (ℝ–cn→ℝ)) |
| 379 | 90 | rehalfcld 12513 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ℝ) |
| 380 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑆‘(𝑗 + 1)) / 2) → (sin‘𝑥) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
| 381 | 378, 379,
380 | cnmptlimc 25925 |
. . . . . . . 8
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ((𝑥 ∈ ℝ ↦ (sin‘𝑥)) limℂ ((𝑆‘(𝑗 + 1)) / 2))) |
| 382 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2))) |
| 383 | | fveq2 6906 |
. . . . . . . . 9
⊢ ((𝑠 / 2) = ((𝑆‘(𝑗 + 1)) / 2) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
| 384 | 383 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) = ((𝑆‘(𝑗 + 1)) / 2))) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
| 385 | 360, 363,
370, 381, 382, 384 | limcco 25928 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) limℂ
(𝑆‘(𝑗 + 1)))) |
| 386 | 356, 357,
343, 143, 150, 359, 385 | mullimc 45631 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘(𝑗 + 1)) / 2))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) limℂ
(𝑆‘(𝑗 + 1)))) |
| 387 | 331 | halfcld 12511 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ℂ) |
| 388 | 387 | sincld 16166 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ℂ) |
| 389 | 154, 105 | sseldd 3984 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈
(-π[,]π)) |
| 390 | | fourierdlem44 46166 |
. . . . . . . 8
⊢ (((𝑆‘(𝑗 + 1)) ∈ (-π[,]π) ∧ (𝑆‘(𝑗 + 1)) ≠ 0) → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ≠ 0) |
| 391 | 389, 341,
390 | syl2anc 584 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ≠ 0) |
| 392 | 358, 388,
369, 391 | mulne0d 11915 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘(𝑗 + 1)) / 2))) ≠
0) |
| 393 | 162, 343,
3, 148, 355, 334, 386, 392, 159 | divlimc 45671 |
. . . . 5
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) limℂ (𝑆‘(𝑗 + 1)))) |
| 394 | 2, 3, 4, 142, 160, 342, 393 | mullimc 45631 |
. . . 4
⊢ (𝜒 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘(𝑗 + 1)))) |
| 395 | | fourierdlem76.d |
. . . . 5
⊢ 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) |
| 396 | 395 | a1i 11 |
. . . 4
⊢ (𝜒 → 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))) |
| 397 | | fourierdlem76.o |
. . . . . . 7
⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| 398 | 397 | reseq1i 5993 |
. . . . . 6
⊢ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 399 | | ioossicc 13473 |
. . . . . . . 8
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
| 400 | | iccss 13455 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝑆‘𝑗) ∧ (𝑆‘(𝑗 + 1)) ≤ 𝐵)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 401 | 19, 98, 85, 107, 400 | syl22anc 839 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 402 | 399, 401 | sstrid 3995 |
. . . . . . 7
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 403 | 402 | resmptd 6058 |
. . . . . 6
⊢ (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))) |
| 404 | 398, 403 | eqtrid 2789 |
. . . . 5
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))) |
| 405 | 404 | oveq1d 7446 |
. . . 4
⊢ (𝜒 → ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘(𝑗 + 1)))) |
| 406 | 394, 396,
405 | 3eltr4d 2856 |
. . 3
⊢ (𝜒 → 𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
| 407 | 1, 406 | sylbir 235 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
| 408 | 242, 249 | gtned 11396 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘𝑖)) |
| 409 | | fourierdlem76.r |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
| 410 | 6, 223, 409 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
| 411 | 240 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘𝑖)))) |
| 412 | 410, 411 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘𝑖)))) |
| 413 | 193 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑄‘𝑖) ∈ ℂ) |
| 414 | 276, 230,
278, 279, 263, 281, 408, 412, 413 | fourierdlem53 46174 |
. . . . . . . . 9
⊢ (𝜒 → 𝑅 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘𝑖))) |
| 415 | | eqid 2737 |
. . . . . . . . 9
⊢ if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) = if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) |
| 416 | | eqid 2737 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 417 | 193, 211,
221, 275, 414, 290, 90, 297, 298, 415, 416 | fourierdlem32 46154 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) ∈ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
| 418 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
| 419 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑆‘𝑗) → (𝑋 + 𝑠) = (𝑋 + (𝑆‘𝑗))) |
| 420 | 419 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑆‘𝑗) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
| 421 | 420 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) ∧ 𝑠 = (𝑆‘𝑗)) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
| 422 | 243 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈
ℝ*) |
| 423 | 245 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 424 | 290 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ∈ ℝ) |
| 425 | 193 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
| 426 | 310 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ≤ (𝑆‘𝑗)) |
| 427 | | neqne 2948 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑆‘𝑗) = (𝑄‘𝑖) → (𝑆‘𝑗) ≠ (𝑄‘𝑖)) |
| 428 | 427 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ≠ (𝑄‘𝑖)) |
| 429 | 425, 424,
426, 428 | leneltd 11415 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) < (𝑆‘𝑗)) |
| 430 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 431 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 432 | 297 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 433 | 314 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
| 434 | 424, 430,
431, 432, 433 | ltletrd 11421 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) < (𝑄‘(𝑖 + 1))) |
| 435 | 422, 423,
424, 429, 434 | eliood 45511 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 436 | 230, 290 | readdcld 11290 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑋 + (𝑆‘𝑗)) ∈ ℝ) |
| 437 | 276, 436 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹‘(𝑋 + (𝑆‘𝑗))) ∈ ℝ) |
| 438 | 437 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝐹‘(𝑋 + (𝑆‘𝑗))) ∈ ℝ) |
| 439 | 418, 421,
435, 438 | fvmptd 7023 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
| 440 | 439 | ifeq2da 4558 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) = if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗))))) |
| 441 | 326 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝜒 → (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘𝑗))) |
| 442 | 417, 440,
441 | 3eltr3d 2855 |
. . . . . . 7
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘𝑗))) |
| 443 | 290 | recnd 11289 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℂ) |
| 444 | 168, 330,
124, 443 | constlimc 45639 |
. . . . . . 7
⊢ (𝜒 → 𝐶 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) limℂ (𝑆‘𝑗))) |
| 445 | 167, 168,
161, 121, 125, 442, 444 | sublimc 45667 |
. . . . . 6
⊢ (𝜒 → (if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) limℂ (𝑆‘𝑗))) |
| 446 | 330, 162,
443 | idlimc 45641 |
. . . . . 6
⊢ (𝜒 → (𝑆‘𝑗) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) limℂ (𝑆‘𝑗))) |
| 447 | 6, 83 | jca 511 |
. . . . . . 7
⊢ (𝜒 → (𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵))) |
| 448 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑆‘𝑗) → (𝑠 ∈ (𝐴[,]𝐵) ↔ (𝑆‘𝑗) ∈ (𝐴[,]𝐵))) |
| 449 | 448 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘𝑗) → ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)))) |
| 450 | | neeq1 3003 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘𝑗) → (𝑠 ≠ 0 ↔ (𝑆‘𝑗) ≠ 0)) |
| 451 | 449, 450 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑠 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → (𝑆‘𝑗) ≠ 0))) |
| 452 | 451, 140 | vtoclg 3554 |
. . . . . . 7
⊢ ((𝑆‘𝑗) ∈ (𝐴[,]𝐵) → ((𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → (𝑆‘𝑗) ≠ 0)) |
| 453 | 83, 447, 452 | sylc 65 |
. . . . . 6
⊢ (𝜒 → (𝑆‘𝑗) ≠ 0) |
| 454 | 161, 162,
2, 126, 166, 445, 446, 453, 141 | divlimc 45671 |
. . . . 5
⊢ (𝜒 → ((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) limℂ (𝑆‘𝑗))) |
| 455 | 356, 330,
358, 443 | constlimc 45639 |
. . . . . . 7
⊢ (𝜒 → 2 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) limℂ
(𝑆‘𝑗))) |
| 456 | 348 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) ≠ ((𝑆‘𝑗) / 2))) → (𝑠 / 2) ∈ ℝ) |
| 457 | 162, 356,
364, 148, 368, 446, 455, 369, 152 | divlimc 45671 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) limℂ (𝑆‘𝑗))) |
| 458 | 290 | rehalfcld 12513 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ℝ) |
| 459 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑆‘𝑗) / 2) → (sin‘𝑥) = (sin‘((𝑆‘𝑗) / 2))) |
| 460 | 378, 458,
459 | cnmptlimc 25925 |
. . . . . . . 8
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ((𝑥 ∈ ℝ ↦ (sin‘𝑥)) limℂ ((𝑆‘𝑗) / 2))) |
| 461 | | fveq2 6906 |
. . . . . . . . 9
⊢ ((𝑠 / 2) = ((𝑆‘𝑗) / 2) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘𝑗) / 2))) |
| 462 | 461 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) = ((𝑆‘𝑗) / 2))) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘𝑗) / 2))) |
| 463 | 456, 363,
457, 460, 382, 462 | limcco 25928 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) limℂ
(𝑆‘𝑗))) |
| 464 | 356, 357,
343, 143, 150, 455, 463 | mullimc 45631 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘𝑗) / 2))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) limℂ
(𝑆‘𝑗))) |
| 465 | 443 | halfcld 12511 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ℂ) |
| 466 | 465 | sincld 16166 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ℂ) |
| 467 | 154, 83 | sseldd 3984 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘𝑗) ∈ (-π[,]π)) |
| 468 | | fourierdlem44 46166 |
. . . . . . . 8
⊢ (((𝑆‘𝑗) ∈ (-π[,]π) ∧ (𝑆‘𝑗) ≠ 0) → (sin‘((𝑆‘𝑗) / 2)) ≠ 0) |
| 469 | 467, 453,
468 | syl2anc 584 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ≠ 0) |
| 470 | 358, 466,
369, 469 | mulne0d 11915 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘𝑗) / 2))) ≠
0) |
| 471 | 162, 343,
3, 148, 355, 446, 464, 470, 159 | divlimc 45671 |
. . . . 5
⊢ (𝜒 → ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) limℂ (𝑆‘𝑗))) |
| 472 | 2, 3, 4, 142, 160, 454, 471 | mullimc 45631 |
. . . 4
⊢ (𝜒 → (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘𝑗))) |
| 473 | | fourierdlem76.e |
. . . . 5
⊢ 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) |
| 474 | 473 | a1i 11 |
. . . 4
⊢ (𝜒 → 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2)))))) |
| 475 | 404 | oveq1d 7446 |
. . . 4
⊢ (𝜒 → ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘𝑗))) |
| 476 | 472, 474,
475 | 3eltr4d 2856 |
. . 3
⊢ (𝜒 → 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
| 477 | 1, 476 | sylbir 235 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
| 478 | 298 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 479 | 478, 266 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) |
| 480 | 479 | mpteq2dva 5242 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))) |
| 481 | 225 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
| 482 | 228 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
| 483 | 230 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑋 ∈ ℝ) |
| 484 | 483, 129 | readdcld 11290 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
| 485 | 240 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
| 486 | 193 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 487 | 243 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 488 | 245 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 489 | 487, 488,
478, 248 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) < 𝑠) |
| 490 | 486, 18, 483, 489 | ltadd2dd 11420 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + (𝑄‘𝑖)) < (𝑋 + 𝑠)) |
| 491 | 485, 490 | eqbrtrd 5165 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
| 492 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 493 | 487, 488,
478, 253 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
| 494 | 18, 492, 483, 493 | ltadd2dd 11420 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
| 495 | 260 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
| 496 | 494, 495 | breqtrd 5169 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1))) |
| 497 | 481, 482,
484, 491, 496 | eliood 45511 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
| 498 | 269, 271,
330, 237, 497 | fourierdlem23 46145 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 499 | 480, 498 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 500 | | ssid 4006 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
| 501 | 500 | a1i 11 |
. . . . . . . 8
⊢ (𝜒 → ℂ ⊆
ℂ) |
| 502 | 330, 124,
501 | constcncfg 45887 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 503 | 499, 502 | subcncf 25479 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 504 | 166 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝜒 → ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))𝑠 ∈ (ℂ ∖
{0})) |
| 505 | | dfss3 3972 |
. . . . . . . 8
⊢ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (ℂ ∖ {0}) ↔
∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))𝑠 ∈ (ℂ ∖
{0})) |
| 506 | 504, 505 | sylibr 234 |
. . . . . . 7
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (ℂ ∖
{0})) |
| 507 | | difssd 4137 |
. . . . . . 7
⊢ (𝜒 → (ℂ ∖ {0})
⊆ ℂ) |
| 508 | 506, 507 | idcncfg 45888 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
| 509 | 503, 508 | divcncf 25482 |
. . . . 5
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 510 | 330, 501 | idcncfg 45888 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 511 | 355, 343 | fmptd 7134 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0})) |
| 512 | 330, 358,
501 | constcncfg 45887 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 513 | | sincn 26488 |
. . . . . . . . . . 11
⊢ sin
∈ (ℂ–cn→ℂ) |
| 514 | 513 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → sin ∈
(ℂ–cn→ℂ)) |
| 515 | 367 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜒 → 2 ∈ (ℂ ∖
{0})) |
| 516 | 330, 515,
507 | constcncfg 45887 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
| 517 | 510, 516 | divcncf 25482 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 518 | 514, 517 | cncfmpt1f 24940 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 519 | 512, 518 | mulcncf 25480 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 520 | | cncfcdm 24924 |
. . . . . . . 8
⊢
(((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) → ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0}))) |
| 521 | 507, 519,
520 | syl2anc 584 |
. . . . . . 7
⊢ (𝜒 → ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0}))) |
| 522 | 511, 521 | mpbird 257 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
| 523 | 510, 522 | divcncf 25482 |
. . . . 5
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 524 | 509, 523 | mulcncf 25480 |
. . . 4
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 525 | 404, 524 | eqeltrd 2841 |
. . 3
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 526 | 1, 525 | sylbir 235 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
| 527 | 407, 477,
526 | jca31 514 |
1
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) ∧ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) |