Step | Hyp | Ref
| Expression |
1 | | fourierdlem76.ch |
. . 3
⊢ (𝜒 ↔ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
2 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) |
3 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
5 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝜑) |
6 | 1, 5 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝜒 → 𝜑) |
7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝜑) |
8 | | ioossicc 13094 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
9 | | fourierdlem76.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℝ) |
10 | 9 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
11 | 6, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → 𝐴 ∈
ℝ*) |
12 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ∈
ℝ*) |
13 | | fourierdlem76.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℝ) |
14 | 13 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
15 | 6, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜒 → 𝐵 ∈
ℝ*) |
16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐵 ∈
ℝ*) |
17 | | elioore 13038 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → 𝑠 ∈ ℝ) |
18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℝ) |
19 | 6, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐴 ∈ ℝ) |
20 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ∈ ℝ) |
21 | | fourierdlem76.t |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
22 | | prfi 9019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝐴, 𝐵} ∈ Fin |
23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
24 | | fzfid 13621 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
25 | | fourierdlem76.q |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
26 | 25 | rnmptfi 42596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((0...𝑀) ∈ Fin
→ ran 𝑄 ∈
Fin) |
27 | | infi 8972 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ran
𝑄 ∈ Fin → (ran
𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
28 | 24, 26, 27 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
29 | | unfi 8917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝐴, 𝐵} ∈ Fin ∧ (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
30 | 23, 28, 29 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
31 | 21, 30 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ∈ Fin) |
32 | | prssg 4749 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
33 | 9, 13, 32 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
34 | 9, 13, 33 | mpbi2and 708 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
35 | | inss2 4160 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵) |
36 | | ioossre 13069 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴(,)𝐵) ⊆ ℝ |
37 | 35, 36 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ) |
39 | 34, 38 | unssd 4116 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ ℝ) |
40 | 21, 39 | eqsstrid 3965 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
41 | | fourierdlem76.s |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) |
42 | | fourierdlem76.n |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = ((♯‘𝑇) − 1) |
43 | 31, 40, 41, 42 | fourierdlem36 43574 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
44 | 6, 43 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
45 | | isof1o 7174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
46 | | f1of 6700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)⟶𝑇) |
47 | 44, 45, 46 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑆:(0...𝑁)⟶𝑇) |
48 | 6, 40 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑇 ⊆ ℝ) |
49 | 47, 48 | fssd 6602 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → 𝑆:(0...𝑁)⟶ℝ) |
50 | 49 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑆:(0...𝑁)⟶ℝ) |
51 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑗 ∈ (0..^𝑁)) |
52 | 1, 51 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑗 ∈ (0..^𝑁)) |
53 | | elfzofz 13331 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → 𝑗 ∈ (0...𝑁)) |
55 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑗 ∈ (0...𝑁)) |
56 | 50, 55 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) ∈ ℝ) |
57 | 43, 45, 46 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝑇) |
58 | | frn 6591 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆:(0...𝑁)⟶𝑇 → ran 𝑆 ⊆ 𝑇) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝑆 ⊆ 𝑇) |
60 | 9 | leidd 11471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
61 | | fourierdlem76.altb |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐴 < 𝐵) |
62 | 9, 13, 61 | ltled 11053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
63 | 9, 13, 9, 60, 62 | eliccd 42932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
64 | 13 | leidd 11471 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ≤ 𝐵) |
65 | 9, 13, 13, 62, 64 | eliccd 42932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
66 | | prssg 4749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
67 | 9, 13, 66 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
68 | 63, 65, 67 | mpbi2and 708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐴[,]𝐵)) |
69 | 35, 8 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
71 | 68, 70 | unssd 4116 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ (𝐴[,]𝐵)) |
72 | 21, 71 | eqsstrid 3965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) |
73 | 59, 72 | sstrd 3927 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝑆 ⊆ (𝐴[,]𝐵)) |
74 | 6, 73 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ran 𝑆 ⊆ (𝐴[,]𝐵)) |
75 | | ffun 6587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆:(0...𝑁)⟶ℝ → Fun 𝑆) |
76 | 49, 75 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → Fun 𝑆) |
77 | | fdm 6593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆:(0...𝑁)⟶ℝ → dom 𝑆 = (0...𝑁)) |
78 | 49, 77 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → dom 𝑆 = (0...𝑁)) |
79 | 78 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (0...𝑁) = dom 𝑆) |
80 | 54, 79 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑗 ∈ dom 𝑆) |
81 | | fvelrn 6936 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑆 ∧ 𝑗 ∈ dom 𝑆) → (𝑆‘𝑗) ∈ ran 𝑆) |
82 | 76, 80, 81 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘𝑗) ∈ ran 𝑆) |
83 | 74, 82 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) |
84 | | iccgelb 13064 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘𝑗)) |
85 | 11, 15, 83, 84 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐴 ≤ (𝑆‘𝑗)) |
86 | 85 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 ≤ (𝑆‘𝑗)) |
87 | 56 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) ∈
ℝ*) |
88 | | fzofzp1 13412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
89 | 52, 88 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑗 + 1) ∈ (0...𝑁)) |
90 | 49, 89 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
91 | 90 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
92 | 91 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
93 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
94 | | ioogtlb 42923 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) < 𝑠) |
95 | 87, 92, 93, 94 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘𝑗) < 𝑠) |
96 | 20, 56, 18, 86, 95 | lelttrd 11063 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐴 < 𝑠) |
97 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
98 | 6, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐵 ∈ ℝ) |
99 | 98 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐵 ∈ ℝ) |
100 | | iooltub 42938 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑆‘(𝑗 + 1))) |
101 | 87, 92, 93, 100 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑆‘(𝑗 + 1))) |
102 | 89, 79 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑗 + 1) ∈ dom 𝑆) |
103 | | fvelrn 6936 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑆 ∧ (𝑗 + 1) ∈ dom 𝑆) → (𝑆‘(𝑗 + 1)) ∈ ran 𝑆) |
104 | 76, 102, 103 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ran 𝑆) |
105 | 74, 104 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) |
106 | | iccleub 13063 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
107 | 11, 15, 105, 106 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑆‘(𝑗 + 1)) ≤ 𝐵) |
109 | 18, 97, 99, 101, 108 | ltletrd 11065 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < 𝐵) |
110 | 12, 16, 18, 96, 109 | eliood 42926 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (𝐴(,)𝐵)) |
111 | 8, 110 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (𝐴[,]𝐵)) |
112 | | fourierdlem76.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
113 | 112 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ) |
114 | | fourierdlem76.xre |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
115 | 114 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
116 | 9, 13 | iccssred 13095 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
117 | 116 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
118 | 115, 117 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
119 | 113, 118 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
120 | 7, 111, 119 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
121 | 120 | recnd 10934 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
122 | | fourierdlem76.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
123 | 122 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
124 | 6, 123 | syl 17 |
. . . . . . . 8
⊢ (𝜒 → 𝐶 ∈ ℂ) |
125 | 124 | adantr 480 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝐶 ∈ ℂ) |
126 | 121, 125 | subcld 11262 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
127 | | ioossre 13069 |
. . . . . . . . 9
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ |
128 | 127 | a1i 11 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ) |
129 | 128 | sselda 3917 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℝ) |
130 | 129 | recnd 10934 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℂ) |
131 | | nne 2946 |
. . . . . . . . . . . 12
⊢ (¬
𝑠 ≠ 0 ↔ 𝑠 = 0) |
132 | 131 | biimpi 215 |
. . . . . . . . . . 11
⊢ (¬
𝑠 ≠ 0 → 𝑠 = 0) |
133 | 132 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (¬
𝑠 ≠ 0 → 0 = 𝑠) |
134 | 133 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 = 𝑠) |
135 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (𝐴[,]𝐵)) |
136 | 135 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
137 | 134, 136 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → 0 ∈ (𝐴[,]𝐵)) |
138 | | fourierdlem76.n0 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
139 | 138 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑠 ≠ 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
140 | 137, 139 | condan 814 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) |
141 | 7, 111, 140 | syl2anc 583 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ≠ 0) |
142 | 126, 130,
141 | divcld 11681 |
. . . . 5
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) ∈ ℂ) |
143 | | 2cnd 11981 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈
ℂ) |
144 | 130 | halfcld 12148 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / 2) ∈ ℂ) |
145 | 144 | sincld 15767 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℂ) |
146 | 143, 145 | mulcld 10926 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
147 | 17 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → 𝑠 ∈ ℂ) |
148 | 147 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ℂ) |
149 | 148 | halfcld 12148 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / 2) ∈ ℂ) |
150 | 149 | sincld 15767 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℂ) |
151 | | 2ne0 12007 |
. . . . . . . 8
⊢ 2 ≠
0 |
152 | 151 | a1i 11 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ≠ 0) |
153 | | fourierdlem76.ab |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
154 | 6, 153 | syl 17 |
. . . . . . . . . 10
⊢ (𝜒 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
155 | 154 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
156 | 155, 111 | sseldd 3918 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (-π[,]π)) |
157 | | fourierdlem44 43582 |
. . . . . . . 8
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
158 | 156, 141,
157 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ≠ 0) |
159 | 143, 150,
152, 158 | mulne0d 11557 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
160 | 130, 146,
159 | divcld 11681 |
. . . . 5
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ) |
161 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) |
162 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) |
163 | 141 | neneqd 2947 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ 𝑠 = 0) |
164 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑠 ∈ {0} ↔ 𝑠 = 0) |
165 | 163, 164 | sylnibr 328 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ 𝑠 ∈ {0}) |
166 | 130, 165 | eldifd 3894 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ (ℂ ∖
{0})) |
167 | | eqid 2738 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) |
168 | | eqid 2738 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) |
169 | | elfzofz 13331 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
170 | 169 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
171 | | pire 25520 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ π
∈ ℝ |
172 | 171 | renegcli 11212 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -π
∈ ℝ |
173 | 172 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → -π ∈
ℝ) |
174 | 173, 114 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (-π + 𝑋) ∈ ℝ) |
175 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → π ∈
ℝ) |
176 | 175, 114 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (π + 𝑋) ∈ ℝ) |
177 | 174, 176 | iccssred 13095 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
178 | 177 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
179 | | fourierdlem76.p |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
180 | | fourierdlem76.m |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℕ) |
181 | | fourierdlem76.v |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
182 | 179, 180,
181 | fourierdlem15 43553 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
183 | 182 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
184 | 183, 170 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
185 | 178, 184 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
186 | 114 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
187 | 185, 186 | resubcld 11333 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
188 | 25 | fvmpt2 6868 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
189 | 170, 187,
188 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
190 | 189, 187 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
191 | 190 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
192 | 191 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
193 | 1, 192 | sylbi 216 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘𝑖) ∈ ℝ) |
194 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (𝑉‘𝑖) = (𝑉‘𝑗)) |
195 | 194 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑗) − 𝑋)) |
196 | 195 | cbvmptv 5183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
197 | 25, 196 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋)) |
198 | 197 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉‘𝑗) − 𝑋))) |
199 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑖 + 1) → (𝑉‘𝑗) = (𝑉‘(𝑖 + 1))) |
200 | 199 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑖 + 1) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
201 | 200 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉‘𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
202 | | fzofzp1 13412 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
203 | 202 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
204 | 183, 203 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋))) |
205 | 178, 204 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
206 | 205, 186 | resubcld 11333 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
207 | 198, 201,
203, 206 | fvmptd 6864 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
208 | 207, 206 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
209 | 208 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
210 | 209 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
211 | 1, 210 | sylbi 216 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
212 | 179 | fourierdlem2 43540 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
213 | 180, 212 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
214 | 181, 213 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
215 | 214 | simprrd 770 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
216 | 215 | r19.21bi 3132 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
217 | 185, 205,
186, 216 | ltsub1dd 11517 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑉‘𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋)) |
218 | 217, 189,
207 | 3brtr4d 5102 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
219 | 218 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
220 | 219 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
221 | 1, 220 | sylbi 216 |
. . . . . . . . 9
⊢ (𝜒 → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
222 | 1 | biimpi 215 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
223 | 222 | simplrd 766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑖 ∈ (0..^𝑀)) |
224 | 6, 223, 185 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℝ) |
225 | 224 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘𝑖) ∈
ℝ*) |
226 | 225 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
227 | 6, 223, 205 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
228 | 227 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
229 | 228 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
230 | 6, 114 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑋 ∈ ℝ) |
231 | 230 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
232 | | elioore 13038 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ) |
233 | 232 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ) |
234 | 231, 233 | readdcld 10935 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
235 | 6, 223, 189 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
236 | 235 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘𝑖)) = (𝑋 + ((𝑉‘𝑖) − 𝑋))) |
237 | 230 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → 𝑋 ∈ ℂ) |
238 | 224 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℂ) |
239 | 237, 238 | pncan3d 11265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + ((𝑉‘𝑖) − 𝑋)) = (𝑉‘𝑖)) |
240 | 236, 239 | eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
241 | 240 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
242 | 193 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
243 | 193 | rexrd 10956 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑖) ∈
ℝ*) |
244 | 243 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
245 | 211 | rexrd 10956 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
246 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
247 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
248 | | ioogtlb 42923 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
249 | 244, 246,
247, 248 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < 𝑠) |
250 | 242, 233,
231, 249 | ltadd2dd 11064 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘𝑖)) < (𝑋 + 𝑠)) |
251 | 241, 250 | eqbrtrd 5092 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
252 | 211 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
253 | | iooltub 42938 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
254 | 244, 246,
247, 253 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
255 | 233, 252,
231, 254 | ltadd2dd 11064 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
256 | 6, 223, 207 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
257 | 256 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋))) |
258 | 227 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
259 | 237, 258 | pncan3d 11265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1))) |
260 | 257, 259 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
261 | 260 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
262 | 255, 261 | breqtrd 5096 |
. . . . . . . . . . . . . 14
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1))) |
263 | 226, 229,
234, 251, 262 | eliood 42926 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
264 | | fvres 6775 |
. . . . . . . . . . . . 13
⊢ ((𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
265 | 263, 264 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠))) |
266 | 265 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) |
267 | 266 | mpteq2dva 5170 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))) |
268 | | ioosscn 13070 |
. . . . . . . . . . . 12
⊢ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ |
269 | 268 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ) |
270 | | fourierdlem76.fcn |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
271 | 6, 223, 270 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) |
272 | | ioosscn 13070 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ |
273 | 272 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ) |
274 | 269, 271,
273, 237, 263 | fourierdlem23 43561 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
275 | 267, 274 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
276 | 6, 112 | syl 17 |
. . . . . . . . . 10
⊢ (𝜒 → 𝐹:ℝ⟶ℝ) |
277 | | ioossre 13069 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ |
278 | 277 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) |
279 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) |
280 | | ioossre 13069 |
. . . . . . . . . . 11
⊢ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ |
281 | 280 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ) |
282 | 233, 254 | ltned 11041 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1))) |
283 | | fourierdlem76.l |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
284 | 6, 223, 283 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) |
285 | 260 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1)))) |
286 | 285 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
287 | 284, 286 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (𝜒 → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘(𝑖 + 1))))) |
288 | 211 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
289 | 276, 230,
278, 279, 263, 281, 282, 287, 288 | fourierdlem53 43590 |
. . . . . . . . 9
⊢ (𝜒 → 𝐿 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘(𝑖 + 1)))) |
290 | 49, 54 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
291 | | elfzoelz 13316 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) |
292 | | zre 12253 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℝ) |
293 | 52, 291, 292 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑗 ∈ ℝ) |
294 | 293 | ltp1d 11835 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑗 < (𝑗 + 1)) |
295 | | isorel 7177 |
. . . . . . . . . . 11
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝑗 + 1) ∈ (0...𝑁))) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
296 | 44, 54, 89, 295 | syl12anc 833 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
297 | 294, 296 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜒 → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
298 | 1 | simprbi 496 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
299 | | eqid 2738 |
. . . . . . . . 9
⊢ if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) |
300 | | eqid 2738 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
301 | 193, 211,
221, 275, 289, 290, 90, 297, 298, 299, 300 | fourierdlem33 43571 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) ∈ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
302 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
303 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → 𝑠 = (𝑆‘(𝑗 + 1))) |
304 | 303 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝑆‘(𝑗 + 1)))) |
305 | 304 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) ∧ 𝑠 = (𝑆‘(𝑗 + 1))) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) |
306 | 243 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) ∈
ℝ*) |
307 | 245 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
308 | 90 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
309 | 193, 211,
290, 90, 297, 298 | fourierdlem10 43548 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → ((𝑄‘𝑖) ≤ (𝑆‘𝑗) ∧ (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1)))) |
310 | 309 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑄‘𝑖) ≤ (𝑆‘𝑗)) |
311 | 193, 290,
90, 310, 297 | lelttrd 11063 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑄‘𝑖) < (𝑆‘(𝑗 + 1))) |
312 | 311 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘𝑖) < (𝑆‘(𝑗 + 1))) |
313 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
314 | 309 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
315 | 314 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
316 | | neqne 2950 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) → (𝑆‘(𝑗 + 1)) ≠ (𝑄‘(𝑖 + 1))) |
317 | 316 | necomd 2998 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ (𝑆‘(𝑗 + 1))) |
318 | 317 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ (𝑆‘(𝑗 + 1))) |
319 | 308, 313,
315, 318 | leneltd 11059 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) < (𝑄‘(𝑖 + 1))) |
320 | 306, 307,
308, 312, 319 | eliood 42926 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝑆‘(𝑗 + 1)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
321 | 230, 90 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑋 + (𝑆‘(𝑗 + 1))) ∈ ℝ) |
322 | 276, 321 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))) ∈ ℝ) |
323 | 322 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))) ∈ ℝ) |
324 | 302, 305,
320, 323 | fvmptd 6864 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ (𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1))) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1))) = (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) |
325 | 324 | ifeq2da 4488 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘(𝑗 + 1)))) = if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1)))))) |
326 | 298 | resmptd 5937 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
327 | 326 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜒 → (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘(𝑗 + 1)))) |
328 | 301, 325,
327 | 3eltr3d 2853 |
. . . . . . 7
⊢ (𝜒 → if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘(𝑗 + 1)))) |
329 | | ax-resscn 10859 |
. . . . . . . . 9
⊢ ℝ
⊆ ℂ |
330 | 128, 329 | sstrdi 3929 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℂ) |
331 | 90 | recnd 10934 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℂ) |
332 | 168, 330,
124, 331 | constlimc 43055 |
. . . . . . 7
⊢ (𝜒 → 𝐶 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) limℂ (𝑆‘(𝑗 + 1)))) |
333 | 167, 168,
161, 121, 125, 328, 332 | sublimc 43083 |
. . . . . 6
⊢ (𝜒 → (if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) limℂ (𝑆‘(𝑗 + 1)))) |
334 | 330, 162,
331 | idlimc 43057 |
. . . . . 6
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) limℂ (𝑆‘(𝑗 + 1)))) |
335 | 6, 105 | jca 511 |
. . . . . . 7
⊢ (𝜒 → (𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))) |
336 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (𝑠 ∈ (𝐴[,]𝐵) ↔ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))) |
337 | 336 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)))) |
338 | | neeq1 3005 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (𝑠 ≠ 0 ↔ (𝑆‘(𝑗 + 1)) ≠ 0)) |
339 | 337, 338 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑠 = (𝑆‘(𝑗 + 1)) → (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) ↔ ((𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≠ 0))) |
340 | 339, 140 | vtoclg 3495 |
. . . . . . 7
⊢ ((𝑆‘(𝑗 + 1)) ∈ ℝ → ((𝜑 ∧ (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝑗 + 1)) ≠ 0)) |
341 | 90, 335, 340 | sylc 65 |
. . . . . 6
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ≠ 0) |
342 | 161, 162,
2, 126, 166, 333, 334, 341, 141 | divlimc 43087 |
. . . . 5
⊢ (𝜒 → ((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) limℂ (𝑆‘(𝑗 + 1)))) |
343 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) |
344 | 143, 150 | mulcld 10926 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
345 | 159 | neneqd 2947 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ (2 ·
(sin‘(𝑠 / 2))) =
0) |
346 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
347 | 346 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈
ℝ) |
348 | 17 | rehalfcld 12150 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (𝑠 / 2) ∈ ℝ) |
349 | 348 | resincld 15780 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (sin‘(𝑠 / 2)) ∈ ℝ) |
350 | 349 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (sin‘(𝑠 / 2)) ∈
ℝ) |
351 | 347, 350 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈
ℝ) |
352 | | elsng 4572 |
. . . . . . . . 9
⊢ ((2
· (sin‘(𝑠 /
2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 ·
(sin‘(𝑠 / 2))) =
0)) |
353 | 351, 352 | syl 17 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((2 ·
(sin‘(𝑠 / 2))) ∈
{0} ↔ (2 · (sin‘(𝑠 / 2))) = 0)) |
354 | 345, 353 | mtbird 324 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ¬ (2 ·
(sin‘(𝑠 / 2))) ∈
{0}) |
355 | 344, 354 | eldifd 3894 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖
{0})) |
356 | | eqid 2738 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) |
357 | | eqid 2738 |
. . . . . . 7
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) |
358 | | 2cnd 11981 |
. . . . . . . 8
⊢ (𝜒 → 2 ∈
ℂ) |
359 | 356, 330,
358, 331 | constlimc 43055 |
. . . . . . 7
⊢ (𝜒 → 2 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) limℂ
(𝑆‘(𝑗 + 1)))) |
360 | 348 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) ≠ ((𝑆‘(𝑗 + 1)) / 2))) → (𝑠 / 2) ∈ ℝ) |
361 | | recn 10892 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
362 | 361 | sincld 15767 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(sin‘𝑥) ∈
ℂ) |
363 | 362 | adantl 481 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈
ℂ) |
364 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) |
365 | | 2cn 11978 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
366 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢ (2 ∈
(ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠
0)) |
367 | 365, 151,
366 | mpbir2an 707 |
. . . . . . . . . 10
⊢ 2 ∈
(ℂ ∖ {0}) |
368 | 367 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 2 ∈ (ℂ ∖
{0})) |
369 | 151 | a1i 11 |
. . . . . . . . 9
⊢ (𝜒 → 2 ≠ 0) |
370 | 162, 356,
364, 148, 368, 334, 359, 369, 152 | divlimc 43087 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) limℂ (𝑆‘(𝑗 + 1)))) |
371 | | sinf 15761 |
. . . . . . . . . . . . . 14
⊢
sin:ℂ⟶ℂ |
372 | 371 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ sin:ℂ⟶ℂ) |
373 | 329 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ ℝ ⊆ ℂ) |
374 | 372, 373 | feqresmpt 6820 |
. . . . . . . . . . . 12
⊢ (⊤
→ (sin ↾ ℝ) = (𝑥 ∈ ℝ ↦ (sin‘𝑥))) |
375 | 374 | mptru 1546 |
. . . . . . . . . . 11
⊢ (sin
↾ ℝ) = (𝑥
∈ ℝ ↦ (sin‘𝑥)) |
376 | | resincncf 43306 |
. . . . . . . . . . 11
⊢ (sin
↾ ℝ) ∈ (ℝ–cn→ℝ) |
377 | 375, 376 | eqeltrri 2836 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ ↦
(sin‘𝑥)) ∈
(ℝ–cn→ℝ) |
378 | 377 | a1i 11 |
. . . . . . . . 9
⊢ (𝜒 → (𝑥 ∈ ℝ ↦ (sin‘𝑥)) ∈ (ℝ–cn→ℝ)) |
379 | 90 | rehalfcld 12150 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ℝ) |
380 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑆‘(𝑗 + 1)) / 2) → (sin‘𝑥) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
381 | 378, 379,
380 | cnmptlimc 24959 |
. . . . . . . 8
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ((𝑥 ∈ ℝ ↦ (sin‘𝑥)) limℂ ((𝑆‘(𝑗 + 1)) / 2))) |
382 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑥 = (𝑠 / 2) → (sin‘𝑥) = (sin‘(𝑠 / 2))) |
383 | | fveq2 6756 |
. . . . . . . . 9
⊢ ((𝑠 / 2) = ((𝑆‘(𝑗 + 1)) / 2) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
384 | 383 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) = ((𝑆‘(𝑗 + 1)) / 2))) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘(𝑗 + 1)) / 2))) |
385 | 360, 363,
370, 381, 382, 384 | limcco 24962 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) limℂ
(𝑆‘(𝑗 + 1)))) |
386 | 356, 357,
343, 143, 150, 359, 385 | mullimc 43047 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘(𝑗 + 1)) / 2))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) limℂ
(𝑆‘(𝑗 + 1)))) |
387 | 331 | halfcld 12148 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / 2) ∈ ℂ) |
388 | 387 | sincld 15767 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ∈ ℂ) |
389 | 154, 105 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈
(-π[,]π)) |
390 | | fourierdlem44 43582 |
. . . . . . . 8
⊢ (((𝑆‘(𝑗 + 1)) ∈ (-π[,]π) ∧ (𝑆‘(𝑗 + 1)) ≠ 0) → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ≠ 0) |
391 | 389, 341,
390 | syl2anc 583 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘(𝑗 + 1)) / 2)) ≠ 0) |
392 | 358, 388,
369, 391 | mulne0d 11557 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘(𝑗 + 1)) / 2))) ≠
0) |
393 | 162, 343,
3, 148, 355, 334, 386, 392, 159 | divlimc 43087 |
. . . . 5
⊢ (𝜒 → ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) limℂ (𝑆‘(𝑗 + 1)))) |
394 | 2, 3, 4, 142, 160, 342, 393 | mullimc 43047 |
. . . 4
⊢ (𝜒 → (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘(𝑗 + 1)))) |
395 | | fourierdlem76.d |
. . . . 5
⊢ 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) |
396 | 395 | a1i 11 |
. . . 4
⊢ (𝜒 → 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2)))))) |
397 | | fourierdlem76.o |
. . . . . . 7
⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
398 | 397 | reseq1i 5876 |
. . . . . 6
⊢ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
399 | | ioossicc 13094 |
. . . . . . . 8
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
400 | | iccss 13076 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ (𝑆‘𝑗) ∧ (𝑆‘(𝑗 + 1)) ≤ 𝐵)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
401 | 19, 98, 85, 107, 400 | syl22anc 835 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
402 | 399, 401 | sstrid 3928 |
. . . . . . 7
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
403 | 402 | resmptd 5937 |
. . . . . 6
⊢ (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))) |
404 | 398, 403 | syl5eq 2791 |
. . . . 5
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))) |
405 | 404 | oveq1d 7270 |
. . . 4
⊢ (𝜒 → ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘(𝑗 + 1)))) |
406 | 394, 396,
405 | 3eltr4d 2854 |
. . 3
⊢ (𝜒 → 𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
407 | 1, 406 | sylbir 234 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1)))) |
408 | 242, 249 | gtned 11040 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘𝑖)) |
409 | | fourierdlem76.r |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
410 | 6, 223, 409 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
411 | 240 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝜒 → ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘𝑖)))) |
412 | 410, 411 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑋 + (𝑄‘𝑖)))) |
413 | 193 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑄‘𝑖) ∈ ℂ) |
414 | 276, 230,
278, 279, 263, 281, 408, 412, 413 | fourierdlem53 43590 |
. . . . . . . . 9
⊢ (𝜒 → 𝑅 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑄‘𝑖))) |
415 | | eqid 2738 |
. . . . . . . . 9
⊢ if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) = if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) |
416 | | eqid 2738 |
. . . . . . . . 9
⊢
((TopOpen‘ℂfld) ↾t ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) =
((TopOpen‘ℂfld) ↾t ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
417 | 193, 211,
221, 275, 414, 290, 90, 297, 298, 415, 416 | fourierdlem32 43570 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) ∈ (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
418 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))) |
419 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑆‘𝑗) → (𝑋 + 𝑠) = (𝑋 + (𝑆‘𝑗))) |
420 | 419 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑆‘𝑗) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
421 | 420 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) ∧ 𝑠 = (𝑆‘𝑗)) → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
422 | 243 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈
ℝ*) |
423 | 245 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
424 | 290 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ∈ ℝ) |
425 | 193 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ∈ ℝ) |
426 | 310 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) ≤ (𝑆‘𝑗)) |
427 | | neqne 2950 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑆‘𝑗) = (𝑄‘𝑖) → (𝑆‘𝑗) ≠ (𝑄‘𝑖)) |
428 | 427 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ≠ (𝑄‘𝑖)) |
429 | 425, 424,
426, 428 | leneltd 11059 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘𝑖) < (𝑆‘𝑗)) |
430 | 90 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
431 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
432 | 297 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
433 | 314 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘(𝑗 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
434 | 424, 430,
431, 432, 433 | ltletrd 11065 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) < (𝑄‘(𝑖 + 1))) |
435 | 422, 423,
424, 429, 434 | eliood 42926 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝑆‘𝑗) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
436 | 230, 290 | readdcld 10935 |
. . . . . . . . . . . 12
⊢ (𝜒 → (𝑋 + (𝑆‘𝑗)) ∈ ℝ) |
437 | 276, 436 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝐹‘(𝑋 + (𝑆‘𝑗))) ∈ ℝ) |
438 | 437 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → (𝐹‘(𝑋 + (𝑆‘𝑗))) ∈ ℝ) |
439 | 418, 421,
435, 438 | fvmptd 6864 |
. . . . . . . . 9
⊢ ((𝜒 ∧ ¬ (𝑆‘𝑗) = (𝑄‘𝑖)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗)) = (𝐹‘(𝑋 + (𝑆‘𝑗)))) |
440 | 439 | ifeq2da 4488 |
. . . . . . . 8
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))‘(𝑆‘𝑗))) = if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗))))) |
441 | 326 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜒 → (((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘𝑗))) |
442 | 417, 440,
441 | 3eltr3d 2853 |
. . . . . . 7
⊢ (𝜒 → if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) limℂ (𝑆‘𝑗))) |
443 | 290 | recnd 10934 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℂ) |
444 | 168, 330,
124, 443 | constlimc 43055 |
. . . . . . 7
⊢ (𝜒 → 𝐶 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) limℂ (𝑆‘𝑗))) |
445 | 167, 168,
161, 121, 125, 442, 444 | sublimc 43083 |
. . . . . 6
⊢ (𝜒 → (if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) limℂ (𝑆‘𝑗))) |
446 | 330, 162,
443 | idlimc 43057 |
. . . . . 6
⊢ (𝜒 → (𝑆‘𝑗) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) limℂ (𝑆‘𝑗))) |
447 | 6, 83 | jca 511 |
. . . . . . 7
⊢ (𝜒 → (𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵))) |
448 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑆‘𝑗) → (𝑠 ∈ (𝐴[,]𝐵) ↔ (𝑆‘𝑗) ∈ (𝐴[,]𝐵))) |
449 | 448 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘𝑗) → ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ↔ (𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)))) |
450 | | neeq1 3005 |
. . . . . . . . 9
⊢ (𝑠 = (𝑆‘𝑗) → (𝑠 ≠ 0 ↔ (𝑆‘𝑗) ≠ 0)) |
451 | 449, 450 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑠 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → (𝑆‘𝑗) ≠ 0))) |
452 | 451, 140 | vtoclg 3495 |
. . . . . . 7
⊢ ((𝑆‘𝑗) ∈ (𝐴[,]𝐵) → ((𝜑 ∧ (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) → (𝑆‘𝑗) ≠ 0)) |
453 | 83, 447, 452 | sylc 65 |
. . . . . 6
⊢ (𝜒 → (𝑆‘𝑗) ≠ 0) |
454 | 161, 162,
2, 126, 166, 445, 446, 453, 141 | divlimc 43087 |
. . . . 5
⊢ (𝜒 → ((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) limℂ (𝑆‘𝑗))) |
455 | 356, 330,
358, 443 | constlimc 43055 |
. . . . . . 7
⊢ (𝜒 → 2 ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) limℂ
(𝑆‘𝑗))) |
456 | 348 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) ≠ ((𝑆‘𝑗) / 2))) → (𝑠 / 2) ∈ ℝ) |
457 | 162, 356,
364, 148, 368, 446, 455, 369, 152 | divlimc 43087 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) limℂ (𝑆‘𝑗))) |
458 | 290 | rehalfcld 12150 |
. . . . . . . . 9
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ℝ) |
459 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑆‘𝑗) / 2) → (sin‘𝑥) = (sin‘((𝑆‘𝑗) / 2))) |
460 | 378, 458,
459 | cnmptlimc 24959 |
. . . . . . . 8
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ((𝑥 ∈ ℝ ↦ (sin‘𝑥)) limℂ ((𝑆‘𝑗) / 2))) |
461 | | fveq2 6756 |
. . . . . . . . 9
⊢ ((𝑠 / 2) = ((𝑆‘𝑗) / 2) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘𝑗) / 2))) |
462 | 461 | ad2antll 725 |
. . . . . . . 8
⊢ ((𝜒 ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ (𝑠 / 2) = ((𝑆‘𝑗) / 2))) → (sin‘(𝑠 / 2)) = (sin‘((𝑆‘𝑗) / 2))) |
463 | 456, 363,
457, 460, 382, 462 | limcco 24962 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) limℂ
(𝑆‘𝑗))) |
464 | 356, 357,
343, 143, 150, 455, 463 | mullimc 43047 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘𝑗) / 2))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) limℂ
(𝑆‘𝑗))) |
465 | 443 | halfcld 12148 |
. . . . . . . 8
⊢ (𝜒 → ((𝑆‘𝑗) / 2) ∈ ℂ) |
466 | 465 | sincld 15767 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ∈ ℂ) |
467 | 154, 83 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜒 → (𝑆‘𝑗) ∈ (-π[,]π)) |
468 | | fourierdlem44 43582 |
. . . . . . . 8
⊢ (((𝑆‘𝑗) ∈ (-π[,]π) ∧ (𝑆‘𝑗) ≠ 0) → (sin‘((𝑆‘𝑗) / 2)) ≠ 0) |
469 | 467, 453,
468 | syl2anc 583 |
. . . . . . 7
⊢ (𝜒 → (sin‘((𝑆‘𝑗) / 2)) ≠ 0) |
470 | 358, 466,
369, 469 | mulne0d 11557 |
. . . . . 6
⊢ (𝜒 → (2 ·
(sin‘((𝑆‘𝑗) / 2))) ≠
0) |
471 | 162, 343,
3, 148, 355, 446, 464, 470, 159 | divlimc 43087 |
. . . . 5
⊢ (𝜒 → ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2)))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) limℂ (𝑆‘𝑗))) |
472 | 2, 3, 4, 142, 160, 454, 471 | mullimc 43047 |
. . . 4
⊢ (𝜒 → (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) ∈ ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘𝑗))) |
473 | | fourierdlem76.e |
. . . . 5
⊢ 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) |
474 | 473 | a1i 11 |
. . . 4
⊢ (𝜒 → 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑖), 𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2)))))) |
475 | 404 | oveq1d 7270 |
. . . 4
⊢ (𝜒 → ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗)) = ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) limℂ (𝑆‘𝑗))) |
476 | 472, 474,
475 | 3eltr4d 2854 |
. . 3
⊢ (𝜒 → 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
477 | 1, 476 | sylbir 234 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) |
478 | 298 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
479 | 478, 266 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) |
480 | 479 | mpteq2dva 5170 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))) |
481 | 225 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) ∈
ℝ*) |
482 | 228 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘(𝑖 + 1)) ∈
ℝ*) |
483 | 230 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑋 ∈ ℝ) |
484 | 483, 129 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) ∈ ℝ) |
485 | 240 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
486 | 193 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
487 | 243 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
488 | 245 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
489 | 487, 488,
478, 248 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘𝑖) < 𝑠) |
490 | 486, 18, 483, 489 | ltadd2dd 11064 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + (𝑄‘𝑖)) < (𝑋 + 𝑠)) |
491 | 485, 490 | eqbrtrd 5092 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑉‘𝑖) < (𝑋 + 𝑠)) |
492 | 211 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
493 | 487, 488,
478, 253 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1))) |
494 | 18, 492, 483, 493 | ltadd2dd 11064 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
495 | 260 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1))) |
496 | 494, 495 | breqtrd 5096 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1))) |
497 | 481, 482,
484, 491, 496 | eliood 42926 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) |
498 | 269, 271,
330, 237, 497 | fourierdlem23 43561 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
499 | 480, 498 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
500 | | ssid 3939 |
. . . . . . . . 9
⊢ ℂ
⊆ ℂ |
501 | 500 | a1i 11 |
. . . . . . . 8
⊢ (𝜒 → ℂ ⊆
ℂ) |
502 | 330, 124,
501 | constcncfg 43303 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝐶) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
503 | 499, 502 | subcncf 24514 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
504 | 166 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜒 → ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))𝑠 ∈ (ℂ ∖
{0})) |
505 | | dfss3 3905 |
. . . . . . . 8
⊢ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (ℂ ∖ {0}) ↔
∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))𝑠 ∈ (ℂ ∖
{0})) |
506 | 504, 505 | sylibr 233 |
. . . . . . 7
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (ℂ ∖
{0})) |
507 | | difssd 4063 |
. . . . . . 7
⊢ (𝜒 → (ℂ ∖ {0})
⊆ ℂ) |
508 | 506, 507 | idcncfg 43304 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
509 | 503, 508 | divcncf 24516 |
. . . . 5
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
510 | 330, 501 | idcncfg 43304 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 𝑠) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
511 | 355, 343 | fmptd 6970 |
. . . . . . 7
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0})) |
512 | 330, 358,
501 | constcncfg 43303 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
513 | | sincn 25508 |
. . . . . . . . . . 11
⊢ sin
∈ (ℂ–cn→ℂ) |
514 | 513 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜒 → sin ∈
(ℂ–cn→ℂ)) |
515 | 367 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜒 → 2 ∈ (ℂ ∖
{0})) |
516 | 330, 515,
507 | constcncfg 43303 |
. . . . . . . . . . 11
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ 2) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
517 | 510, 516 | divcncf 24516 |
. . . . . . . . . 10
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / 2)) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
518 | 514, 517 | cncfmpt1f 23983 |
. . . . . . . . 9
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (sin‘(𝑠 / 2))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
519 | 512, 518 | mulcncf 24515 |
. . . . . . . 8
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
520 | | cncffvrn 23967 |
. . . . . . . 8
⊢
(((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) → ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0}))) |
521 | 507, 519,
520 | syl2anc 583 |
. . . . . . 7
⊢ (𝜒 → ((𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶(ℂ ∖
{0}))) |
522 | 511, 521 | mpbird 256 |
. . . . . 6
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→(ℂ ∖ {0}))) |
523 | 510, 522 | divcncf 24516 |
. . . . 5
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
524 | 509, 523 | mulcncf 24515 |
. . . 4
⊢ (𝜒 → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
525 | 404, 524 | eqeltrd 2839 |
. . 3
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
526 | 1, 525 | sylbir 234 |
. 2
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ)) |
527 | 407, 477,
526 | jca31 514 |
1
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) ∧ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) |