MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem1 Structured version   Visualization version   GIF version

Theorem dfac12lem1 10104
Description: Lemma for dfac12 10110. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
dfac12.5 (𝜑𝐶 ∈ On)
dfac12.h 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
Assertion
Ref Expression
dfac12lem1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝜑,𝑦   𝑥,𝐹,𝑦   𝑦,𝐻
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐻(𝑥)

Proof of Theorem dfac12lem1
StepHypRef Expression
1 dfac12.5 . . 3 (𝜑𝐶 ∈ On)
2 dfac12.4 . . . 4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
32tfr2 8369 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
41, 3syl 17 . 2 (𝜑 → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
52tfr1 8368 . . . . 5 𝐺 Fn On
6 fnfun 6621 . . . . 5 (𝐺 Fn On → Fun 𝐺)
75, 6ax-mp 5 . . . 4 Fun 𝐺
8 resfunexg 7192 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
97, 1, 8sylancr 587 . . 3 (𝜑 → (𝐺𝐶) ∈ V)
10 dmeq 5870 . . . . . 6 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1110fveq2d 6865 . . . . 5 (𝑥 = (𝐺𝐶) → (𝑅1‘dom 𝑥) = (𝑅1‘dom (𝐺𝐶)))
1210unieqd 4887 . . . . . . 7 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1310, 12eqeq12d 2746 . . . . . 6 (𝑥 = (𝐺𝐶) → (dom 𝑥 = dom 𝑥 ↔ dom (𝐺𝐶) = dom (𝐺𝐶)))
14 rneq 5903 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → ran 𝑥 = ran (𝐺𝐶))
15 df-ima 5654 . . . . . . . . . . . . 13 (𝐺𝐶) = ran (𝐺𝐶)
1614, 15eqtr4di 2783 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1716unieqd 4887 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1817rneqd 5905 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
1918unieqd 4887 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
20 suceq 6403 . . . . . . . . 9 ( ran ran 𝑥 = ran (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2119, 20syl 17 . . . . . . . 8 (𝑥 = (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2221oveq1d 7405 . . . . . . 7 (𝑥 = (𝐺𝐶) → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran (𝐺𝐶) ·o (rank‘𝑦)))
23 fveq1 6860 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (𝑥‘suc (rank‘𝑦)) = ((𝐺𝐶)‘suc (rank‘𝑦)))
2423fveq1d 6863 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((𝑥‘suc (rank‘𝑦))‘𝑦) = (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦))
2522, 24oveq12d 7408 . . . . . 6 (𝑥 = (𝐺𝐶) → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)))
26 id 22 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → 𝑥 = (𝐺𝐶))
2726, 12fveq12d 6868 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → (𝑥 dom 𝑥) = ((𝐺𝐶)‘ dom (𝐺𝐶)))
2827rneqd 5905 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)))
29 oieq2 9473 . . . . . . . . . . 11 (ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3028, 29syl 17 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3130cnveqd 5842 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3231, 27coeq12d 5831 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))))
3332imaeq1d 6033 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))
3433fveq2d 6865 . . . . . 6 (𝑥 = (𝐺𝐶) → (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))
3513, 25, 34ifbieq12d 4520 . . . . 5 (𝑥 = (𝐺𝐶) → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
3611, 35mpteq12dv 5197 . . . 4 (𝑥 = (𝐺𝐶) → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
37 eqid 2730 . . . 4 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))
38 fvex 6874 . . . . 5 (𝑅1‘dom (𝐺𝐶)) ∈ V
3938mptex 7200 . . . 4 (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) ∈ V
4036, 37, 39fvmpt 6971 . . 3 ((𝐺𝐶) ∈ V → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
419, 40syl 17 . 2 (𝜑 → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
42 onss 7764 . . . . . . . 8 (𝐶 ∈ On → 𝐶 ⊆ On)
431, 42syl 17 . . . . . . 7 (𝜑𝐶 ⊆ On)
44 fnssres 6644 . . . . . . 7 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
455, 43, 44sylancr 587 . . . . . 6 (𝜑 → (𝐺𝐶) Fn 𝐶)
4645fndmd 6626 . . . . 5 (𝜑 → dom (𝐺𝐶) = 𝐶)
4746fveq2d 6865 . . . 4 (𝜑 → (𝑅1‘dom (𝐺𝐶)) = (𝑅1𝐶))
4847mpteq1d 5200 . . 3 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
4946adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5049unieqd 4887 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5149, 50eqeq12d 2746 . . . . . 6 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (dom (𝐺𝐶) = dom (𝐺𝐶) ↔ 𝐶 = 𝐶))
5251ifbid 4515 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
53 rankr1ai 9758 . . . . . . . . . . . 12 (𝑦 ∈ (𝑅1𝐶) → (rank‘𝑦) ∈ 𝐶)
5453ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
55 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → 𝐶 = 𝐶)
5654, 55eleqtrd 2831 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
57 eloni 6345 . . . . . . . . . . . 12 (𝐶 ∈ On → Ord 𝐶)
58 ordsucuniel 7802 . . . . . . . . . . . 12 (Ord 𝐶 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
591, 57, 583syl 18 . . . . . . . . . . 11 (𝜑 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6059ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6156, 60mpbid 232 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → suc (rank‘𝑦) ∈ 𝐶)
6261fvresd 6881 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((𝐺𝐶)‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑦)))
6362fveq1d 6863 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑦))
6463oveq2d 7406 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)))
6564ifeq1da 4523 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
6650adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → dom (𝐺𝐶) = 𝐶)
6766fveq2d 6865 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = ((𝐺𝐶)‘ 𝐶))
681ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
69 uniexg 7719 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ On → 𝐶 ∈ V)
70 sucidg 6418 . . . . . . . . . . . . . . . . 17 ( 𝐶 ∈ V → 𝐶 ∈ suc 𝐶)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
721adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑅1𝐶)) → 𝐶 ∈ On)
73 orduniorsuc 7808 . . . . . . . . . . . . . . . . . 18 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
7472, 57, 733syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
7574orcanai 1004 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
7671, 75eleqtrrd 2832 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
7776fvresd 6881 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
7867, 77eqtrd 2765 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = (𝐺 𝐶))
7978rneqd 5905 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶))
80 oieq2 9473 . . . . . . . . . . . 12 (ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8179, 80syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8281cnveqd 5842 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8382, 78coeq12d 5831 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶)))
84 dfac12.h . . . . . . . . 9 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
8583, 84eqtr4di 2783 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = 𝐻)
8685imaeq1d 6033 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦) = (𝐻𝑦))
8786fveq2d 6865 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)) = (𝐹‘(𝐻𝑦)))
8887ifeq2da 4524 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
8952, 65, 883eqtrd 2769 . . . 4 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
9089mpteq2dva 5203 . . 3 (𝜑 → (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
9148, 90eqtrd 2765 . 2 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
924, 41, 913eqtrd 2769 1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  ifcif 4491  𝒫 cpw 4566   cuni 4874  cmpt 5191   E cep 5540  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  ccom 5645  Ord word 6334  Oncon0 6335  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  1-1wf1 6511  cfv 6514  (class class class)co 7390  recscrecs 8342   +o coa 8434   ·o comu 8435  OrdIsocoi 9469  harchar 9516  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oi 9470  df-r1 9724  df-rank 9725
This theorem is referenced by:  dfac12lem2  10105
  Copyright terms: Public domain W3C validator