MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem1 Structured version   Visualization version   GIF version

Theorem dfac12lem1 10038
Description: Lemma for dfac12 10044. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
dfac12.5 (𝜑𝐶 ∈ On)
dfac12.h 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
Assertion
Ref Expression
dfac12lem1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝜑,𝑦   𝑥,𝐹,𝑦   𝑦,𝐻
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐻(𝑥)

Proof of Theorem dfac12lem1
StepHypRef Expression
1 dfac12.5 . . 3 (𝜑𝐶 ∈ On)
2 dfac12.4 . . . 4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
32tfr2 8320 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
41, 3syl 17 . 2 (𝜑 → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
52tfr1 8319 . . . . 5 𝐺 Fn On
6 fnfun 6582 . . . . 5 (𝐺 Fn On → Fun 𝐺)
75, 6ax-mp 5 . . . 4 Fun 𝐺
8 resfunexg 7151 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
97, 1, 8sylancr 587 . . 3 (𝜑 → (𝐺𝐶) ∈ V)
10 dmeq 5846 . . . . . 6 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1110fveq2d 6826 . . . . 5 (𝑥 = (𝐺𝐶) → (𝑅1‘dom 𝑥) = (𝑅1‘dom (𝐺𝐶)))
1210unieqd 4871 . . . . . . 7 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1310, 12eqeq12d 2745 . . . . . 6 (𝑥 = (𝐺𝐶) → (dom 𝑥 = dom 𝑥 ↔ dom (𝐺𝐶) = dom (𝐺𝐶)))
14 rneq 5878 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → ran 𝑥 = ran (𝐺𝐶))
15 df-ima 5632 . . . . . . . . . . . . 13 (𝐺𝐶) = ran (𝐺𝐶)
1614, 15eqtr4di 2782 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1716unieqd 4871 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1817rneqd 5880 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
1918unieqd 4871 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
20 suceq 6375 . . . . . . . . 9 ( ran ran 𝑥 = ran (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2119, 20syl 17 . . . . . . . 8 (𝑥 = (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2221oveq1d 7364 . . . . . . 7 (𝑥 = (𝐺𝐶) → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran (𝐺𝐶) ·o (rank‘𝑦)))
23 fveq1 6821 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (𝑥‘suc (rank‘𝑦)) = ((𝐺𝐶)‘suc (rank‘𝑦)))
2423fveq1d 6824 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((𝑥‘suc (rank‘𝑦))‘𝑦) = (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦))
2522, 24oveq12d 7367 . . . . . 6 (𝑥 = (𝐺𝐶) → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)))
26 id 22 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → 𝑥 = (𝐺𝐶))
2726, 12fveq12d 6829 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → (𝑥 dom 𝑥) = ((𝐺𝐶)‘ dom (𝐺𝐶)))
2827rneqd 5880 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)))
29 oieq2 9405 . . . . . . . . . . 11 (ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3028, 29syl 17 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3130cnveqd 5818 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3231, 27coeq12d 5807 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))))
3332imaeq1d 6010 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))
3433fveq2d 6826 . . . . . 6 (𝑥 = (𝐺𝐶) → (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))
3513, 25, 34ifbieq12d 4505 . . . . 5 (𝑥 = (𝐺𝐶) → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
3611, 35mpteq12dv 5179 . . . 4 (𝑥 = (𝐺𝐶) → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
37 eqid 2729 . . . 4 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))
38 fvex 6835 . . . . 5 (𝑅1‘dom (𝐺𝐶)) ∈ V
3938mptex 7159 . . . 4 (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) ∈ V
4036, 37, 39fvmpt 6930 . . 3 ((𝐺𝐶) ∈ V → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
419, 40syl 17 . 2 (𝜑 → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
42 onss 7721 . . . . . . . 8 (𝐶 ∈ On → 𝐶 ⊆ On)
431, 42syl 17 . . . . . . 7 (𝜑𝐶 ⊆ On)
44 fnssres 6605 . . . . . . 7 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
455, 43, 44sylancr 587 . . . . . 6 (𝜑 → (𝐺𝐶) Fn 𝐶)
4645fndmd 6587 . . . . 5 (𝜑 → dom (𝐺𝐶) = 𝐶)
4746fveq2d 6826 . . . 4 (𝜑 → (𝑅1‘dom (𝐺𝐶)) = (𝑅1𝐶))
4847mpteq1d 5182 . . 3 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
4946adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5049unieqd 4871 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5149, 50eqeq12d 2745 . . . . . 6 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (dom (𝐺𝐶) = dom (𝐺𝐶) ↔ 𝐶 = 𝐶))
5251ifbid 4500 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
53 rankr1ai 9694 . . . . . . . . . . . 12 (𝑦 ∈ (𝑅1𝐶) → (rank‘𝑦) ∈ 𝐶)
5453ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
55 simpr 484 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → 𝐶 = 𝐶)
5654, 55eleqtrd 2830 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
57 eloni 6317 . . . . . . . . . . . 12 (𝐶 ∈ On → Ord 𝐶)
58 ordsucuniel 7757 . . . . . . . . . . . 12 (Ord 𝐶 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
591, 57, 583syl 18 . . . . . . . . . . 11 (𝜑 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6059ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6156, 60mpbid 232 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → suc (rank‘𝑦) ∈ 𝐶)
6261fvresd 6842 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((𝐺𝐶)‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑦)))
6362fveq1d 6824 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑦))
6463oveq2d 7365 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)))
6564ifeq1da 4508 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
6650adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → dom (𝐺𝐶) = 𝐶)
6766fveq2d 6826 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = ((𝐺𝐶)‘ 𝐶))
681ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
69 uniexg 7676 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ On → 𝐶 ∈ V)
70 sucidg 6390 . . . . . . . . . . . . . . . . 17 ( 𝐶 ∈ V → 𝐶 ∈ suc 𝐶)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
721adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑅1𝐶)) → 𝐶 ∈ On)
73 orduniorsuc 7763 . . . . . . . . . . . . . . . . . 18 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
7472, 57, 733syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
7574orcanai 1004 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
7671, 75eleqtrrd 2831 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
7776fvresd 6842 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
7867, 77eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = (𝐺 𝐶))
7978rneqd 5880 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶))
80 oieq2 9405 . . . . . . . . . . . 12 (ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8179, 80syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8281cnveqd 5818 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8382, 78coeq12d 5807 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶)))
84 dfac12.h . . . . . . . . 9 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
8583, 84eqtr4di 2782 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = 𝐻)
8685imaeq1d 6010 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦) = (𝐻𝑦))
8786fveq2d 6826 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)) = (𝐹‘(𝐻𝑦)))
8887ifeq2da 4509 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
8952, 65, 883eqtrd 2768 . . . 4 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
9089mpteq2dva 5185 . . 3 (𝜑 → (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
9148, 90eqtrd 2764 . 2 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
924, 41, 913eqtrd 2768 1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  ifcif 4476  𝒫 cpw 4551   cuni 4858  cmpt 5173   E cep 5518  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  ccom 5623  Ord word 6306  Oncon0 6307  suc csuc 6309  Fun wfun 6476   Fn wfn 6477  1-1wf1 6479  cfv 6482  (class class class)co 7349  recscrecs 8293   +o coa 8385   ·o comu 8386  OrdIsocoi 9401  harchar 9448  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oi 9402  df-r1 9660  df-rank 9661
This theorem is referenced by:  dfac12lem2  10039
  Copyright terms: Public domain W3C validator