MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem1 Structured version   Visualization version   GIF version

Theorem dfac12lem1 9554
Description: Lemma for dfac12 9560. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
dfac12.5 (𝜑𝐶 ∈ On)
dfac12.h 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
Assertion
Ref Expression
dfac12lem1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑥,𝐺,𝑦   𝜑,𝑦   𝑥,𝐹,𝑦   𝑦,𝐻
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐻(𝑥)

Proof of Theorem dfac12lem1
StepHypRef Expression
1 dfac12.5 . . 3 (𝜑𝐶 ∈ On)
2 dfac12.4 . . . 4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
32tfr2 8017 . . 3 (𝐶 ∈ On → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
41, 3syl 17 . 2 (𝜑 → (𝐺𝐶) = ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)))
52tfr1 8016 . . . . 5 𝐺 Fn On
6 fnfun 6423 . . . . 5 (𝐺 Fn On → Fun 𝐺)
75, 6ax-mp 5 . . . 4 Fun 𝐺
8 resfunexg 6955 . . . 4 ((Fun 𝐺𝐶 ∈ On) → (𝐺𝐶) ∈ V)
97, 1, 8sylancr 590 . . 3 (𝜑 → (𝐺𝐶) ∈ V)
10 dmeq 5736 . . . . . 6 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1110fveq2d 6649 . . . . 5 (𝑥 = (𝐺𝐶) → (𝑅1‘dom 𝑥) = (𝑅1‘dom (𝐺𝐶)))
1210unieqd 4814 . . . . . . 7 (𝑥 = (𝐺𝐶) → dom 𝑥 = dom (𝐺𝐶))
1310, 12eqeq12d 2814 . . . . . 6 (𝑥 = (𝐺𝐶) → (dom 𝑥 = dom 𝑥 ↔ dom (𝐺𝐶) = dom (𝐺𝐶)))
14 rneq 5770 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → ran 𝑥 = ran (𝐺𝐶))
15 df-ima 5532 . . . . . . . . . . . . 13 (𝐺𝐶) = ran (𝐺𝐶)
1614, 15eqtr4di 2851 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1716unieqd 4814 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran 𝑥 = (𝐺𝐶))
1817rneqd 5772 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
1918unieqd 4814 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → ran ran 𝑥 = ran (𝐺𝐶))
20 suceq 6224 . . . . . . . . 9 ( ran ran 𝑥 = ran (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2119, 20syl 17 . . . . . . . 8 (𝑥 = (𝐺𝐶) → suc ran ran 𝑥 = suc ran (𝐺𝐶))
2221oveq1d 7150 . . . . . . 7 (𝑥 = (𝐺𝐶) → (suc ran ran 𝑥 ·o (rank‘𝑦)) = (suc ran (𝐺𝐶) ·o (rank‘𝑦)))
23 fveq1 6644 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (𝑥‘suc (rank‘𝑦)) = ((𝐺𝐶)‘suc (rank‘𝑦)))
2423fveq1d 6647 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((𝑥‘suc (rank‘𝑦))‘𝑦) = (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦))
2522, 24oveq12d 7153 . . . . . 6 (𝑥 = (𝐺𝐶) → ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)))
26 id 22 . . . . . . . . . . . . 13 (𝑥 = (𝐺𝐶) → 𝑥 = (𝐺𝐶))
2726, 12fveq12d 6652 . . . . . . . . . . . 12 (𝑥 = (𝐺𝐶) → (𝑥 dom 𝑥) = ((𝐺𝐶)‘ dom (𝐺𝐶)))
2827rneqd 5772 . . . . . . . . . . 11 (𝑥 = (𝐺𝐶) → ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)))
29 oieq2 8961 . . . . . . . . . . 11 (ran (𝑥 dom 𝑥) = ran ((𝐺𝐶)‘ dom (𝐺𝐶)) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3028, 29syl 17 . . . . . . . . . 10 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3130cnveqd 5710 . . . . . . . . 9 (𝑥 = (𝐺𝐶) → OrdIso( E , ran (𝑥 dom 𝑥)) = OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))))
3231, 27coeq12d 5699 . . . . . . . 8 (𝑥 = (𝐺𝐶) → (OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) = (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))))
3332imaeq1d 5895 . . . . . . 7 (𝑥 = (𝐺𝐶) → ((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦) = ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))
3433fveq2d 6649 . . . . . 6 (𝑥 = (𝐺𝐶) → (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)) = (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))
3513, 25, 34ifbieq12d 4452 . . . . 5 (𝑥 = (𝐺𝐶) → if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))) = if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
3611, 35mpteq12dv 5115 . . . 4 (𝑥 = (𝐺𝐶) → (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
37 eqid 2798 . . . 4 (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))) = (𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))
38 fvex 6658 . . . . 5 (𝑅1‘dom (𝐺𝐶)) ∈ V
3938mptex 6963 . . . 4 (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) ∈ V
4036, 37, 39fvmpt 6745 . . 3 ((𝐺𝐶) ∈ V → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
419, 40syl 17 . 2 (𝜑 → ((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦)))))‘(𝐺𝐶)) = (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
42 onss 7485 . . . . . . . 8 (𝐶 ∈ On → 𝐶 ⊆ On)
431, 42syl 17 . . . . . . 7 (𝜑𝐶 ⊆ On)
44 fnssres 6442 . . . . . . 7 ((𝐺 Fn On ∧ 𝐶 ⊆ On) → (𝐺𝐶) Fn 𝐶)
455, 43, 44sylancr 590 . . . . . 6 (𝜑 → (𝐺𝐶) Fn 𝐶)
4645fndmd 6427 . . . . 5 (𝜑 → dom (𝐺𝐶) = 𝐶)
4746fveq2d 6649 . . . 4 (𝜑 → (𝑅1‘dom (𝐺𝐶)) = (𝑅1𝐶))
4847mpteq1d 5119 . . 3 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))))
4946adantr 484 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5049unieqd 4814 . . . . . . 7 ((𝜑𝑦 ∈ (𝑅1𝐶)) → dom (𝐺𝐶) = 𝐶)
5149, 50eqeq12d 2814 . . . . . 6 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (dom (𝐺𝐶) = dom (𝐺𝐶) ↔ 𝐶 = 𝐶))
5251ifbid 4447 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
53 rankr1ai 9211 . . . . . . . . . . . 12 (𝑦 ∈ (𝑅1𝐶) → (rank‘𝑦) ∈ 𝐶)
5453ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
55 simpr 488 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → 𝐶 = 𝐶)
5654, 55eleqtrd 2892 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (rank‘𝑦) ∈ 𝐶)
57 eloni 6169 . . . . . . . . . . . 12 (𝐶 ∈ On → Ord 𝐶)
58 ordsucuniel 7519 . . . . . . . . . . . 12 (Ord 𝐶 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
591, 57, 583syl 18 . . . . . . . . . . 11 (𝜑 → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6059ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((rank‘𝑦) ∈ 𝐶 ↔ suc (rank‘𝑦) ∈ 𝐶))
6156, 60mpbid 235 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → suc (rank‘𝑦) ∈ 𝐶)
6261fvresd 6665 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((𝐺𝐶)‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑦)))
6362fveq1d 6647 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑦))
6463oveq2d 7151 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ 𝐶 = 𝐶) → ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)) = ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)))
6564ifeq1da 4455 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))))
6650adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → dom (𝐺𝐶) = 𝐶)
6766fveq2d 6649 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = ((𝐺𝐶)‘ 𝐶))
681ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ On)
69 uniexg 7446 . . . . . . . . . . . . . . . . 17 (𝐶 ∈ On → 𝐶 ∈ V)
70 sucidg 6237 . . . . . . . . . . . . . . . . 17 ( 𝐶 ∈ V → 𝐶 ∈ suc 𝐶)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 ∈ suc 𝐶)
721adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (𝑅1𝐶)) → 𝐶 ∈ On)
73 orduniorsuc 7525 . . . . . . . . . . . . . . . . . 18 (Ord 𝐶 → (𝐶 = 𝐶𝐶 = suc 𝐶))
7472, 57, 733syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (𝑅1𝐶)) → (𝐶 = 𝐶𝐶 = suc 𝐶))
7574orcanai 1000 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶 = suc 𝐶)
7671, 75eleqtrrd 2893 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → 𝐶𝐶)
7776fvresd 6665 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ 𝐶) = (𝐺 𝐶))
7867, 77eqtrd 2833 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((𝐺𝐶)‘ dom (𝐺𝐶)) = (𝐺 𝐶))
7978rneqd 5772 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶))
80 oieq2 8961 . . . . . . . . . . . 12 (ran ((𝐺𝐶)‘ dom (𝐺𝐶)) = ran (𝐺 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8179, 80syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8281cnveqd 5710 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) = OrdIso( E , ran (𝐺 𝐶)))
8382, 78coeq12d 5699 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶)))
84 dfac12.h . . . . . . . . 9 𝐻 = (OrdIso( E , ran (𝐺 𝐶)) ∘ (𝐺 𝐶))
8583, 84eqtr4di 2851 . . . . . . . 8 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) = 𝐻)
8685imaeq1d 5895 . . . . . . 7 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → ((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦) = (𝐻𝑦))
8786fveq2d 6649 . . . . . 6 (((𝜑𝑦 ∈ (𝑅1𝐶)) ∧ ¬ 𝐶 = 𝐶) → (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)) = (𝐹‘(𝐻𝑦)))
8887ifeq2da 4456 . . . . 5 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
8952, 65, 883eqtrd 2837 . . . 4 ((𝜑𝑦 ∈ (𝑅1𝐶)) → if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦))) = if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦))))
9089mpteq2dva 5125 . . 3 (𝜑 → (𝑦 ∈ (𝑅1𝐶) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
9148, 90eqtrd 2833 . 2 (𝜑 → (𝑦 ∈ (𝑅1‘dom (𝐺𝐶)) ↦ if(dom (𝐺𝐶) = dom (𝐺𝐶), ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o (((𝐺𝐶)‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran ((𝐺𝐶)‘ dom (𝐺𝐶))) ∘ ((𝐺𝐶)‘ dom (𝐺𝐶))) “ 𝑦)))) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
924, 41, 913eqtrd 2837 1 (𝜑 → (𝐺𝐶) = (𝑦 ∈ (𝑅1𝐶) ↦ if(𝐶 = 𝐶, ((suc ran (𝐺𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  ifcif 4425  𝒫 cpw 4497   cuni 4800  cmpt 5110   E cep 5429  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  ccom 5523  Ord word 6158  Oncon0 6159  suc csuc 6161  Fun wfun 6318   Fn wfn 6319  1-1wf1 6321  cfv 6324  (class class class)co 7135  recscrecs 7990   +o coa 8082   ·o comu 8083  OrdIsocoi 8957  harchar 9004  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oi 8958  df-r1 9177  df-rank 9178
This theorem is referenced by:  dfac12lem2  9555
  Copyright terms: Public domain W3C validator