Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcmpt | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcmpt.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
limcmpt.f | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) |
limcmpt.j | ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
limcmpt.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
limcmpt | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt.j | . . 3 ⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) | |
2 | limcmpt.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
3 | nfcv 2909 | . . . 4 ⊢ Ⅎ𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) | |
4 | nfv 1921 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
5 | nfcv 2909 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
6 | nffvmpt1 6782 | . . . . 5 ⊢ Ⅎ𝑧((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦) | |
7 | 4, 5, 6 | nfif 4495 | . . . 4 ⊢ Ⅎ𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦)) |
8 | eqeq1 2744 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 = 𝐵 ↔ 𝑦 = 𝐵)) | |
9 | fveq2 6771 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦)) | |
10 | 8, 9 | ifbieq2d 4491 | . . . 4 ⊢ (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦))) |
11 | 3, 7, 10 | cbvmpt 5190 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑦))) |
12 | limcmpt.f | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ) | |
13 | 12 | fmpttd 6986 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐷):𝐴⟶ℂ) |
14 | limcmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
15 | limcmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
16 | 1, 2, 11, 13, 14, 15 | ellimc 25035 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
17 | elun 4088 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵})) | |
18 | velsn 4583 | . . . . . . . . . 10 ⊢ (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵) | |
19 | 18 | orbi2i 910 | . . . . . . . . 9 ⊢ ((𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵)) |
20 | 17, 19 | bitri 274 | . . . . . . . 8 ⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵)) |
21 | pm5.61 998 | . . . . . . . . 9 ⊢ (((𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 = 𝐵)) | |
22 | 21 | simplbi 498 | . . . . . . . 8 ⊢ (((𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ 𝐴) |
23 | 20, 22 | sylanb 581 | . . . . . . 7 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧 ∈ 𝐴) |
24 | 23, 12 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ) |
25 | eqid 2740 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐷) = (𝑧 ∈ 𝐴 ↦ 𝐷) | |
26 | 25 | fvmpt2 6883 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝐷 ∈ ℂ) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
27 | 23, 24, 26 | syl2an2 683 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
28 | 27 | anassrs 468 | . . . . 5 ⊢ (((𝜑 ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧) = 𝐷) |
29 | 28 | ifeq2da 4497 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷)) |
30 | 29 | mpteq2dva 5179 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
31 | 30 | eleq1d 2825 | . 2 ⊢ (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧 ∈ 𝐴 ↦ 𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
32 | 16, 31 | bitrd 278 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ∪ cun 3890 ⊆ wss 3892 ifcif 4465 {csn 4567 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ↾t crest 17129 TopOpenctopn 17130 ℂfldccnfld 20595 CnP ccnp 22374 limℂ climc 25024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fi 9148 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-fz 13239 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-mulr 16974 df-starv 16975 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-rest 17131 df-topn 17132 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cnp 22377 df-xms 23471 df-ms 23472 df-limc 25028 |
This theorem is referenced by: limcmpt2 25046 limccnp2 25054 limcco 25055 |
Copyright terms: Public domain | W3C validator |