MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt Structured version   Visualization version   GIF version

Theorem limcmpt 25841
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt.a (𝜑𝐴 ⊆ ℂ)
limcmpt.b (𝜑𝐵 ∈ ℂ)
limcmpt.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
limcmpt.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcmpt.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limcmpt.j . . 3 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2 limcmpt.k . . 3 𝐾 = (TopOpen‘ℂfld)
3 nfcv 2899 . . . 4 𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))
4 nfv 1914 . . . . 5 𝑧 𝑦 = 𝐵
5 nfcv 2899 . . . . 5 𝑧𝐶
6 nffvmpt1 6892 . . . . 5 𝑧((𝑧𝐴𝐷)‘𝑦)
74, 5, 6nfif 4536 . . . 4 𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦))
8 eqeq1 2740 . . . . 5 (𝑧 = 𝑦 → (𝑧 = 𝐵𝑦 = 𝐵))
9 fveq2 6881 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴𝐷)‘𝑧) = ((𝑧𝐴𝐷)‘𝑦))
108, 9ifbieq2d 4532 . . . 4 (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
113, 7, 10cbvmpt 5228 . . 3 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
12 limcmpt.f . . . 4 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
1312fmpttd 7110 . . 3 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
14 limcmpt.a . . 3 (𝜑𝐴 ⊆ ℂ)
15 limcmpt.b . . 3 (𝜑𝐵 ∈ ℂ)
161, 2, 11, 13, 14, 15ellimc 25831 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
17 elun 4133 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
18 velsn 4622 . . . . . . . . . 10 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
1918orbi2i 912 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2017, 19bitri 275 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
21 pm5.61 1002 . . . . . . . . 9 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
2221simplbi 497 . . . . . . . 8 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2320, 22sylanb 581 . . . . . . 7 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2423, 12sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ)
25 eqid 2736 . . . . . . . 8 (𝑧𝐴𝐷) = (𝑧𝐴𝐷)
2625fvmpt2 7002 . . . . . . 7 ((𝑧𝐴𝐷 ∈ ℂ) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2723, 24, 26syl2an2 686 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2827anassrs 467 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2928ifeq2da 4538 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷))
3029mpteq2dva 5219 . . 3 (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
3130eleq1d 2820 . 2 (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
3216, 31bitrd 279 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3929  wss 3931  ifcif 4505  {csn 4606  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  t crest 17439  TopOpenctopn 17440  fldccnfld 21320   CnP ccnp 23168   lim climc 25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cnp 23171  df-xms 24264  df-ms 24265  df-limc 25824
This theorem is referenced by:  limcmpt2  25842  limccnp2  25850  limcco  25851
  Copyright terms: Public domain W3C validator