![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcmpt | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt.a | β’ (π β π΄ β β) |
limcmpt.b | β’ (π β π΅ β β) |
limcmpt.f | β’ ((π β§ π§ β π΄) β π· β β) |
limcmpt.j | β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) |
limcmpt.k | β’ πΎ = (TopOpenββfld) |
Ref | Expression |
---|---|
limcmpt | β’ (π β (πΆ β ((π§ β π΄ β¦ π·) limβ π΅) β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, π·)) β ((π½ CnP πΎ)βπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt.j | . . 3 β’ π½ = (πΎ βΎt (π΄ βͺ {π΅})) | |
2 | limcmpt.k | . . 3 β’ πΎ = (TopOpenββfld) | |
3 | nfcv 2901 | . . . 4 β’ β²π¦if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§)) | |
4 | nfv 1915 | . . . . 5 β’ β²π§ π¦ = π΅ | |
5 | nfcv 2901 | . . . . 5 β’ β²π§πΆ | |
6 | nffvmpt1 6901 | . . . . 5 β’ β²π§((π§ β π΄ β¦ π·)βπ¦) | |
7 | 4, 5, 6 | nfif 4557 | . . . 4 β’ β²π§if(π¦ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ¦)) |
8 | eqeq1 2734 | . . . . 5 β’ (π§ = π¦ β (π§ = π΅ β π¦ = π΅)) | |
9 | fveq2 6890 | . . . . 5 β’ (π§ = π¦ β ((π§ β π΄ β¦ π·)βπ§) = ((π§ β π΄ β¦ π·)βπ¦)) | |
10 | 8, 9 | ifbieq2d 4553 | . . . 4 β’ (π§ = π¦ β if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§)) = if(π¦ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ¦))) |
11 | 3, 7, 10 | cbvmpt 5258 | . . 3 β’ (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§))) = (π¦ β (π΄ βͺ {π΅}) β¦ if(π¦ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ¦))) |
12 | limcmpt.f | . . . 4 β’ ((π β§ π§ β π΄) β π· β β) | |
13 | 12 | fmpttd 7115 | . . 3 β’ (π β (π§ β π΄ β¦ π·):π΄βΆβ) |
14 | limcmpt.a | . . 3 β’ (π β π΄ β β) | |
15 | limcmpt.b | . . 3 β’ (π β π΅ β β) | |
16 | 1, 2, 11, 13, 14, 15 | ellimc 25622 | . 2 β’ (π β (πΆ β ((π§ β π΄ β¦ π·) limβ π΅) β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§))) β ((π½ CnP πΎ)βπ΅))) |
17 | elun 4147 | . . . . . . . . 9 β’ (π§ β (π΄ βͺ {π΅}) β (π§ β π΄ β¨ π§ β {π΅})) | |
18 | velsn 4643 | . . . . . . . . . 10 β’ (π§ β {π΅} β π§ = π΅) | |
19 | 18 | orbi2i 909 | . . . . . . . . 9 β’ ((π§ β π΄ β¨ π§ β {π΅}) β (π§ β π΄ β¨ π§ = π΅)) |
20 | 17, 19 | bitri 274 | . . . . . . . 8 β’ (π§ β (π΄ βͺ {π΅}) β (π§ β π΄ β¨ π§ = π΅)) |
21 | pm5.61 997 | . . . . . . . . 9 β’ (((π§ β π΄ β¨ π§ = π΅) β§ Β¬ π§ = π΅) β (π§ β π΄ β§ Β¬ π§ = π΅)) | |
22 | 21 | simplbi 496 | . . . . . . . 8 β’ (((π§ β π΄ β¨ π§ = π΅) β§ Β¬ π§ = π΅) β π§ β π΄) |
23 | 20, 22 | sylanb 579 | . . . . . . 7 β’ ((π§ β (π΄ βͺ {π΅}) β§ Β¬ π§ = π΅) β π§ β π΄) |
24 | 23, 12 | sylan2 591 | . . . . . . 7 β’ ((π β§ (π§ β (π΄ βͺ {π΅}) β§ Β¬ π§ = π΅)) β π· β β) |
25 | eqid 2730 | . . . . . . . 8 β’ (π§ β π΄ β¦ π·) = (π§ β π΄ β¦ π·) | |
26 | 25 | fvmpt2 7008 | . . . . . . 7 β’ ((π§ β π΄ β§ π· β β) β ((π§ β π΄ β¦ π·)βπ§) = π·) |
27 | 23, 24, 26 | syl2an2 682 | . . . . . 6 β’ ((π β§ (π§ β (π΄ βͺ {π΅}) β§ Β¬ π§ = π΅)) β ((π§ β π΄ β¦ π·)βπ§) = π·) |
28 | 27 | anassrs 466 | . . . . 5 β’ (((π β§ π§ β (π΄ βͺ {π΅})) β§ Β¬ π§ = π΅) β ((π§ β π΄ β¦ π·)βπ§) = π·) |
29 | 28 | ifeq2da 4559 | . . . 4 β’ ((π β§ π§ β (π΄ βͺ {π΅})) β if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§)) = if(π§ = π΅, πΆ, π·)) |
30 | 29 | mpteq2dva 5247 | . . 3 β’ (π β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§))) = (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, π·))) |
31 | 30 | eleq1d 2816 | . 2 β’ (π β ((π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, ((π§ β π΄ β¦ π·)βπ§))) β ((π½ CnP πΎ)βπ΅) β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, π·)) β ((π½ CnP πΎ)βπ΅))) |
32 | 16, 31 | bitrd 278 | 1 β’ (π β (πΆ β ((π§ β π΄ β¦ π·) limβ π΅) β (π§ β (π΄ βͺ {π΅}) β¦ if(π§ = π΅, πΆ, π·)) β ((π½ CnP πΎ)βπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β¨ wo 843 = wceq 1539 β wcel 2104 βͺ cun 3945 β wss 3947 ifcif 4527 {csn 4627 β¦ cmpt 5230 βcfv 6542 (class class class)co 7411 βcc 11110 βΎt crest 17370 TopOpenctopn 17371 βfldccnfld 21144 CnP ccnp 22949 limβ climc 25611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cnp 22952 df-xms 24046 df-ms 24047 df-limc 25615 |
This theorem is referenced by: limcmpt2 25633 limccnp2 25641 limcco 25642 |
Copyright terms: Public domain | W3C validator |