MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt Structured version   Visualization version   GIF version

Theorem limcmpt 25812
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt.a (𝜑𝐴 ⊆ ℂ)
limcmpt.b (𝜑𝐵 ∈ ℂ)
limcmpt.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
limcmpt.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcmpt.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limcmpt.j . . 3 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2 limcmpt.k . . 3 𝐾 = (TopOpen‘ℂfld)
3 nfcv 2895 . . . 4 𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))
4 nfv 1915 . . . . 5 𝑧 𝑦 = 𝐵
5 nfcv 2895 . . . . 5 𝑧𝐶
6 nffvmpt1 6839 . . . . 5 𝑧((𝑧𝐴𝐷)‘𝑦)
74, 5, 6nfif 4505 . . . 4 𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦))
8 eqeq1 2737 . . . . 5 (𝑧 = 𝑦 → (𝑧 = 𝐵𝑦 = 𝐵))
9 fveq2 6828 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴𝐷)‘𝑧) = ((𝑧𝐴𝐷)‘𝑦))
108, 9ifbieq2d 4501 . . . 4 (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
113, 7, 10cbvmpt 5195 . . 3 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
12 limcmpt.f . . . 4 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
1312fmpttd 7054 . . 3 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
14 limcmpt.a . . 3 (𝜑𝐴 ⊆ ℂ)
15 limcmpt.b . . 3 (𝜑𝐵 ∈ ℂ)
161, 2, 11, 13, 14, 15ellimc 25802 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
17 elun 4102 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
18 velsn 4591 . . . . . . . . . 10 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
1918orbi2i 912 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2017, 19bitri 275 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
21 pm5.61 1002 . . . . . . . . 9 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
2221simplbi 497 . . . . . . . 8 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2320, 22sylanb 581 . . . . . . 7 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2423, 12sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ)
25 eqid 2733 . . . . . . . 8 (𝑧𝐴𝐷) = (𝑧𝐴𝐷)
2625fvmpt2 6946 . . . . . . 7 ((𝑧𝐴𝐷 ∈ ℂ) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2723, 24, 26syl2an2 686 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2827anassrs 467 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2928ifeq2da 4507 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷))
3029mpteq2dva 5186 . . 3 (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
3130eleq1d 2818 . 2 (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
3216, 31bitrd 279 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  cun 3896  wss 3898  ifcif 4474  {csn 4575  cmpt 5174  cfv 6486  (class class class)co 7352  cc 11011  t crest 17326  TopOpenctopn 17327  fldccnfld 21293   CnP ccnp 23141   lim climc 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-rest 17328  df-topn 17329  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cnp 23144  df-xms 24236  df-ms 24237  df-limc 25795
This theorem is referenced by:  limcmpt2  25813  limccnp2  25821  limcco  25822
  Copyright terms: Public domain W3C validator