MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt Structured version   Visualization version   GIF version

Theorem limcmpt 25045
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt.a (𝜑𝐴 ⊆ ℂ)
limcmpt.b (𝜑𝐵 ∈ ℂ)
limcmpt.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
limcmpt.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcmpt.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limcmpt.j . . 3 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2 limcmpt.k . . 3 𝐾 = (TopOpen‘ℂfld)
3 nfcv 2909 . . . 4 𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))
4 nfv 1921 . . . . 5 𝑧 𝑦 = 𝐵
5 nfcv 2909 . . . . 5 𝑧𝐶
6 nffvmpt1 6782 . . . . 5 𝑧((𝑧𝐴𝐷)‘𝑦)
74, 5, 6nfif 4495 . . . 4 𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦))
8 eqeq1 2744 . . . . 5 (𝑧 = 𝑦 → (𝑧 = 𝐵𝑦 = 𝐵))
9 fveq2 6771 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴𝐷)‘𝑧) = ((𝑧𝐴𝐷)‘𝑦))
108, 9ifbieq2d 4491 . . . 4 (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
113, 7, 10cbvmpt 5190 . . 3 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
12 limcmpt.f . . . 4 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
1312fmpttd 6986 . . 3 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
14 limcmpt.a . . 3 (𝜑𝐴 ⊆ ℂ)
15 limcmpt.b . . 3 (𝜑𝐵 ∈ ℂ)
161, 2, 11, 13, 14, 15ellimc 25035 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
17 elun 4088 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
18 velsn 4583 . . . . . . . . . 10 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
1918orbi2i 910 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2017, 19bitri 274 . . . . . . . 8 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
21 pm5.61 998 . . . . . . . . 9 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
2221simplbi 498 . . . . . . . 8 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2320, 22sylanb 581 . . . . . . 7 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2423, 12sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ)
25 eqid 2740 . . . . . . . 8 (𝑧𝐴𝐷) = (𝑧𝐴𝐷)
2625fvmpt2 6883 . . . . . . 7 ((𝑧𝐴𝐷 ∈ ℂ) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2723, 24, 26syl2an2 683 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2827anassrs 468 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2928ifeq2da 4497 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷))
3029mpteq2dva 5179 . . 3 (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
3130eleq1d 2825 . 2 (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
3216, 31bitrd 278 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  cun 3890  wss 3892  ifcif 4465  {csn 4567  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  t crest 17129  TopOpenctopn 17130  fldccnfld 20595   CnP ccnp 22374   lim climc 25024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-fz 13239  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-rest 17131  df-topn 17132  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cnp 22377  df-xms 23471  df-ms 23472  df-limc 25028
This theorem is referenced by:  limcmpt2  25046  limccnp2  25054  limcco  25055
  Copyright terms: Public domain W3C validator