Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt Structured version   Visualization version   GIF version

Theorem limcmpt 24088
 Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt.a (𝜑𝐴 ⊆ ℂ)
limcmpt.b (𝜑𝐵 ∈ ℂ)
limcmpt.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
limcmpt.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcmpt.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limcmpt.j . . 3 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
2 limcmpt.k . . 3 𝐾 = (TopOpen‘ℂfld)
3 nfcv 2934 . . . 4 𝑦if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))
4 nfv 1957 . . . . 5 𝑧 𝑦 = 𝐵
5 nfcv 2934 . . . . 5 𝑧𝐶
6 nffvmpt1 6459 . . . . 5 𝑧((𝑧𝐴𝐷)‘𝑦)
74, 5, 6nfif 4336 . . . 4 𝑧if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦))
8 eqeq1 2782 . . . . 5 (𝑧 = 𝑦 → (𝑧 = 𝐵𝑦 = 𝐵))
9 fveq2 6448 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴𝐷)‘𝑧) = ((𝑧𝐴𝐷)‘𝑦))
108, 9ifbieq2d 4332 . . . 4 (𝑧 = 𝑦 → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
113, 7, 10cbvmpt 4986 . . 3 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑦 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑦 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑦)))
12 limcmpt.f . . . 4 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
1312fmpttd 6651 . . 3 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
14 limcmpt.a . . 3 (𝜑𝐴 ⊆ ℂ)
15 limcmpt.b . . 3 (𝜑𝐵 ∈ ℂ)
161, 2, 11, 13, 14, 15ellimc 24078 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
17 elun 3976 . . . . . . . . . 10 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
18 velsn 4414 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
1918orbi2i 899 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
2017, 19bitri 267 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 = 𝐵))
21 pm5.61 986 . . . . . . . . . 10 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐴 ∧ ¬ 𝑧 = 𝐵))
2221simplbi 493 . . . . . . . . 9 (((𝑧𝐴𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2320, 22sylanb 576 . . . . . . . 8 ((𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → 𝑧𝐴)
2423adantl 475 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝑧𝐴)
2523, 12sylan2 586 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → 𝐷 ∈ ℂ)
26 eqid 2778 . . . . . . . 8 (𝑧𝐴𝐷) = (𝑧𝐴𝐷)
2726fvmpt2 6554 . . . . . . 7 ((𝑧𝐴𝐷 ∈ ℂ) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2824, 25, 27syl2anc 579 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
2928anassrs 461 . . . . 5 (((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑧 = 𝐵) → ((𝑧𝐴𝐷)‘𝑧) = 𝐷)
3029ifeq2da 4338 . . . 4 ((𝜑𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧)) = if(𝑧 = 𝐵, 𝐶, 𝐷))
3130mpteq2dva 4981 . . 3 (𝜑 → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
3231eleq1d 2844 . 2 (𝜑 → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, ((𝑧𝐴𝐷)‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
3316, 32bitrd 271 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 836   = wceq 1601   ∈ wcel 2107   ∪ cun 3790   ⊆ wss 3792  ifcif 4307  {csn 4398   ↦ cmpt 4967  ‘cfv 6137  (class class class)co 6924  ℂcc 10272   ↾t crest 16471  TopOpenctopn 16472  ℂfldccnfld 20146   CnP ccnp 21441   limℂ climc 24067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fi 8607  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-fz 12648  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-plusg 16355  df-mulr 16356  df-starv 16357  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-rest 16473  df-topn 16474  df-topgen 16494  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cnp 21444  df-xms 22537  df-ms 22538  df-limc 24071 This theorem is referenced by:  limcmpt2  24089  limccnp2  24097  limcco  24098
 Copyright terms: Public domain W3C validator