| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnv0 | Structured version Visualization version GIF version | ||
| Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| Ref | Expression |
|---|---|
| radcnv0 | ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑟 = 0 → (𝐺‘𝑟) = (𝐺‘0)) | |
| 2 | 1 | seqeq3d 13981 | . . 3 ⊢ (𝑟 = 0 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘0))) |
| 3 | 2 | eleq1d 2814 | . 2 ⊢ (𝑟 = 0 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
| 4 | 0red 11184 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 5 | nn0uz 12842 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | 0zd 12548 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 7 | snfi 9017 | . . . 4 ⊢ {0} ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {0} ∈ Fin) |
| 9 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 11 | 10 | snssd 4776 | . . 3 ⊢ (𝜑 → {0} ⊆ ℕ0) |
| 12 | ifid 4532 | . . . 4 ⊢ if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘) | |
| 13 | 0cnd 11174 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 14 | pser.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26327 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 16 | 13, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 19 | elnn0 12451 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | |
| 20 | 18, 19 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
| 21 | 20 | ord 864 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0)) |
| 22 | velsn 4608 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 23 | 21, 22 | imbitrrdi 252 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0})) |
| 24 | 23 | con1d 145 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ)) |
| 25 | 24 | imp 406 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ) |
| 26 | 25 | 0expd 14111 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0) |
| 27 | 26 | oveq2d 7406 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
| 28 | radcnv.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 29 | 28 | ffvelcdmda 7059 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴‘𝑘) ∈ ℂ) |
| 31 | 30 | mul01d 11380 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · 0) = 0) |
| 32 | 17, 27, 31 | 3eqtrd 2769 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0) |
| 33 | 32 | ifeq2da 4524 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 34 | 12, 33 | eqtr3id 2779 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 35 | 11 | sselda 3949 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ0) |
| 36 | 14, 28, 13 | psergf 26328 | . . . . 5 ⊢ (𝜑 → (𝐺‘0):ℕ0⟶ℂ) |
| 37 | 36 | ffvelcdmda 7059 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 38 | 35, 37 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 39 | 5, 6, 8, 11, 34, 38 | fsumcvg3 15702 | . 2 ⊢ (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ ) |
| 40 | 3, 4, 39 | elrabd 3664 | 1 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3408 ifcif 4491 {csn 4592 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 ℝcr 11074 0cc0 11075 + caddc 11078 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 seqcseq 13973 ↑cexp 14033 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 |
| This theorem is referenced by: radcnvcl 26333 radcnvrat 44310 |
| Copyright terms: Public domain | W3C validator |