MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Visualization version   GIF version

Theorem radcnv0 26459
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
Assertion
Ref Expression
radcnv0 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑟 = 0 → (𝐺𝑟) = (𝐺‘0))
21seqeq3d 14050 . . 3 (𝑟 = 0 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺‘0)))
32eleq1d 2826 . 2 (𝑟 = 0 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
4 0red 11264 . 2 (𝜑 → 0 ∈ ℝ)
5 nn0uz 12920 . . 3 0 = (ℤ‘0)
6 0zd 12625 . . 3 (𝜑 → 0 ∈ ℤ)
7 snfi 9083 . . . 4 {0} ∈ Fin
87a1i 11 . . 3 (𝜑 → {0} ∈ Fin)
9 0nn0 12541 . . . . 5 0 ∈ ℕ0
109a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
1110snssd 4809 . . 3 (𝜑 → {0} ⊆ ℕ0)
12 ifid 4566 . . . 4 if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘)
13 0cnd 11254 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
14 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 26454 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1613, 15sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1716adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
18 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 elnn0 12528 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2018, 19sylib 218 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2120ord 865 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
22 velsn 4642 . . . . . . . . . . 11 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2321, 22imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0}))
2423con1d 145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ))
2524imp 406 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ)
26250expd 14179 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0)
2726oveq2d 7447 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
28 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
2928ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3029adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴𝑘) ∈ ℂ)
3130mul01d 11460 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · 0) = 0)
3217, 27, 313eqtrd 2781 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0)
3332ifeq2da 4558 . . . 4 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3412, 33eqtr3id 2791 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3511sselda 3983 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝑘 ∈ ℕ0)
3614, 28, 13psergf 26455 . . . . 5 (𝜑 → (𝐺‘0):ℕ0⟶ℂ)
3736ffvelcdmda 7104 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ)
3835, 37syldan 591 . . 3 ((𝜑𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ)
395, 6, 8, 11, 34, 38fsumcvg3 15765 . 2 (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ )
403, 4, 39elrabd 3694 1 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  {crab 3436  ifcif 4525  {csn 4626  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  cn 12266  0cn0 12526  seqcseq 14042  cexp 14102  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524
This theorem is referenced by:  radcnvcl  26460  radcnvrat  44333
  Copyright terms: Public domain W3C validator