| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnv0 | Structured version Visualization version GIF version | ||
| Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| Ref | Expression |
|---|---|
| radcnv0 | ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑟 = 0 → (𝐺‘𝑟) = (𝐺‘0)) | |
| 2 | 1 | seqeq3d 14027 | . . 3 ⊢ (𝑟 = 0 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘0))) |
| 3 | 2 | eleq1d 2819 | . 2 ⊢ (𝑟 = 0 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
| 4 | 0red 11238 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 5 | nn0uz 12894 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | 0zd 12600 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 7 | snfi 9057 | . . . 4 ⊢ {0} ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {0} ∈ Fin) |
| 9 | 0nn0 12516 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 11 | 10 | snssd 4785 | . . 3 ⊢ (𝜑 → {0} ⊆ ℕ0) |
| 12 | ifid 4541 | . . . 4 ⊢ if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘) | |
| 13 | 0cnd 11228 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 14 | pser.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26372 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 16 | 13, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 19 | elnn0 12503 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | |
| 20 | 18, 19 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
| 21 | 20 | ord 864 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0)) |
| 22 | velsn 4617 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 23 | 21, 22 | imbitrrdi 252 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0})) |
| 24 | 23 | con1d 145 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ)) |
| 25 | 24 | imp 406 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ) |
| 26 | 25 | 0expd 14157 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0) |
| 27 | 26 | oveq2d 7421 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
| 28 | radcnv.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 29 | 28 | ffvelcdmda 7074 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴‘𝑘) ∈ ℂ) |
| 31 | 30 | mul01d 11434 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · 0) = 0) |
| 32 | 17, 27, 31 | 3eqtrd 2774 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0) |
| 33 | 32 | ifeq2da 4533 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 34 | 12, 33 | eqtr3id 2784 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 35 | 11 | sselda 3958 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ0) |
| 36 | 14, 28, 13 | psergf 26373 | . . . . 5 ⊢ (𝜑 → (𝐺‘0):ℕ0⟶ℂ) |
| 37 | 36 | ffvelcdmda 7074 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 38 | 35, 37 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 39 | 5, 6, 8, 11, 34, 38 | fsumcvg3 15745 | . 2 ⊢ (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ ) |
| 40 | 3, 4, 39 | elrabd 3673 | 1 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 {crab 3415 ifcif 4500 {csn 4601 ↦ cmpt 5201 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℂcc 11127 ℝcr 11128 0cc0 11129 + caddc 11132 · cmul 11134 ℕcn 12240 ℕ0cn0 12501 seqcseq 14019 ↑cexp 14079 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 |
| This theorem is referenced by: radcnvcl 26378 radcnvrat 44338 |
| Copyright terms: Public domain | W3C validator |