MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Visualization version   GIF version

Theorem radcnv0 25575
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
Assertion
Ref Expression
radcnv0 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑟 = 0 → (𝐺𝑟) = (𝐺‘0))
21seqeq3d 13729 . . 3 (𝑟 = 0 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺‘0)))
32eleq1d 2823 . 2 (𝑟 = 0 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
4 0red 10978 . 2 (𝜑 → 0 ∈ ℝ)
5 nn0uz 12620 . . 3 0 = (ℤ‘0)
6 0zd 12331 . . 3 (𝜑 → 0 ∈ ℤ)
7 snfi 8834 . . . 4 {0} ∈ Fin
87a1i 11 . . 3 (𝜑 → {0} ∈ Fin)
9 0nn0 12248 . . . . 5 0 ∈ ℕ0
109a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
1110snssd 4742 . . 3 (𝜑 → {0} ⊆ ℕ0)
12 ifid 4499 . . . 4 if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘)
13 0cnd 10968 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
14 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 25570 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1613, 15sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1716adantr 481 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
18 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 elnn0 12235 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2018, 19sylib 217 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2120ord 861 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
22 velsn 4577 . . . . . . . . . . 11 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2321, 22syl6ibr 251 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0}))
2423con1d 145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ))
2524imp 407 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ)
26250expd 13857 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0)
2726oveq2d 7291 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
28 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
2928ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3029adantr 481 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴𝑘) ∈ ℂ)
3130mul01d 11174 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · 0) = 0)
3217, 27, 313eqtrd 2782 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0)
3332ifeq2da 4491 . . . 4 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3412, 33eqtr3id 2792 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3511sselda 3921 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝑘 ∈ ℕ0)
3614, 28, 13psergf 25571 . . . . 5 (𝜑 → (𝐺‘0):ℕ0⟶ℂ)
3736ffvelrnda 6961 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ)
3835, 37syldan 591 . . 3 ((𝜑𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ)
395, 6, 8, 11, 34, 38fsumcvg3 15441 . 2 (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ )
403, 4, 39elrabd 3626 1 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  {crab 3068  ifcif 4459  {csn 4561  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cn 11973  0cn0 12233  seqcseq 13721  cexp 13782  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197
This theorem is referenced by:  radcnvcl  25576  radcnvrat  41932
  Copyright terms: Public domain W3C validator