Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > radcnv0 | Structured version Visualization version GIF version |
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
Ref | Expression |
---|---|
radcnv0 | ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6659 | . . . 4 ⊢ (𝑟 = 0 → (𝐺‘𝑟) = (𝐺‘0)) | |
2 | 1 | seqeq3d 13427 | . . 3 ⊢ (𝑟 = 0 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘0))) |
3 | 2 | eleq1d 2837 | . 2 ⊢ (𝑟 = 0 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
4 | 0red 10683 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
5 | nn0uz 12321 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
6 | 0zd 12033 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
7 | snfi 8615 | . . . 4 ⊢ {0} ∈ Fin | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {0} ∈ Fin) |
9 | 0nn0 11950 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
11 | 10 | snssd 4700 | . . 3 ⊢ (𝜑 → {0} ⊆ ℕ0) |
12 | ifid 4461 | . . . 4 ⊢ if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘) | |
13 | 0cnd 10673 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℂ) | |
14 | pser.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
15 | 14 | pserval2 25106 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
16 | 13, 15 | sylan 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
17 | 16 | adantr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
18 | simpr 489 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
19 | elnn0 11937 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | |
20 | 18, 19 | sylib 221 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
21 | 20 | ord 862 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0)) |
22 | velsn 4539 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
23 | 21, 22 | syl6ibr 255 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0})) |
24 | 23 | con1d 147 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ)) |
25 | 24 | imp 411 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ) |
26 | 25 | 0expd 13554 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0) |
27 | 26 | oveq2d 7167 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
28 | radcnv.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
29 | 28 | ffvelrnda 6843 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
30 | 29 | adantr 485 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴‘𝑘) ∈ ℂ) |
31 | 30 | mul01d 10878 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · 0) = 0) |
32 | 17, 27, 31 | 3eqtrd 2798 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0) |
33 | 32 | ifeq2da 4453 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
34 | 12, 33 | syl5eqr 2808 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
35 | 11 | sselda 3893 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ0) |
36 | 14, 28, 13 | psergf 25107 | . . . . 5 ⊢ (𝜑 → (𝐺‘0):ℕ0⟶ℂ) |
37 | 36 | ffvelrnda 6843 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
38 | 35, 37 | syldan 595 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
39 | 5, 6, 8, 11, 34, 38 | fsumcvg3 15135 | . 2 ⊢ (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ ) |
40 | 3, 4, 39 | elrabd 3605 | 1 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∨ wo 845 = wceq 1539 ∈ wcel 2112 {crab 3075 ifcif 4421 {csn 4523 ↦ cmpt 5113 dom cdm 5525 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 Fincfn 8528 ℂcc 10574 ℝcr 10575 0cc0 10576 + caddc 10579 · cmul 10581 ℕcn 11675 ℕ0cn0 11935 seqcseq 13419 ↑cexp 13480 ⇝ cli 14890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9138 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8940 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-n0 11936 df-z 12022 df-uz 12284 df-rp 12432 df-fz 12941 df-seq 13420 df-exp 13481 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-clim 14894 |
This theorem is referenced by: radcnvcl 25112 radcnvrat 41392 |
Copyright terms: Public domain | W3C validator |