| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnv0 | Structured version Visualization version GIF version | ||
| Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| Ref | Expression |
|---|---|
| radcnv0 | ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . 4 ⊢ (𝑟 = 0 → (𝐺‘𝑟) = (𝐺‘0)) | |
| 2 | 1 | seqeq3d 13934 | . . 3 ⊢ (𝑟 = 0 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘0))) |
| 3 | 2 | eleq1d 2813 | . 2 ⊢ (𝑟 = 0 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ )) |
| 4 | 0red 11137 | . 2 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 5 | nn0uz 12795 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | 0zd 12501 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 7 | snfi 8975 | . . . 4 ⊢ {0} ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → {0} ∈ Fin) |
| 9 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 11 | 10 | snssd 4763 | . . 3 ⊢ (𝜑 → {0} ⊆ ℕ0) |
| 12 | ifid 4519 | . . . 4 ⊢ if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘) | |
| 13 | 0cnd 11127 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 14 | pser.g | . . . . . . . . 9 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 15 | 14 | pserval2 26336 | . . . . . . . 8 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 16 | 13, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴‘𝑘) · (0↑𝑘))) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
| 19 | elnn0 12404 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) | |
| 20 | 18, 19 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0)) |
| 21 | 20 | ord 864 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0)) |
| 22 | velsn 4595 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 23 | 21, 22 | imbitrrdi 252 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0})) |
| 24 | 23 | con1d 145 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ)) |
| 25 | 24 | imp 406 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ) |
| 26 | 25 | 0expd 14064 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0) |
| 27 | 26 | oveq2d 7369 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · (0↑𝑘)) = ((𝐴‘𝑘) · 0)) |
| 28 | radcnv.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 29 | 28 | ffvelcdmda 7022 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴‘𝑘) ∈ ℂ) |
| 31 | 30 | mul01d 11333 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴‘𝑘) · 0) = 0) |
| 32 | 17, 27, 31 | 3eqtrd 2768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0) |
| 33 | 32 | ifeq2da 4511 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 34 | 12, 33 | eqtr3id 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0)) |
| 35 | 11 | sselda 3937 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ0) |
| 36 | 14, 28, 13 | psergf 26337 | . . . . 5 ⊢ (𝜑 → (𝐺‘0):ℕ0⟶ℂ) |
| 37 | 36 | ffvelcdmda 7022 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 38 | 35, 37 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ) |
| 39 | 5, 6, 8, 11, 34, 38 | fsumcvg3 15654 | . 2 ⊢ (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ ) |
| 40 | 3, 4, 39 | elrabd 3652 | 1 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {crab 3396 ifcif 4478 {csn 4579 ↦ cmpt 5176 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℂcc 11026 ℝcr 11027 0cc0 11028 + caddc 11031 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 seqcseq 13926 ↑cexp 13986 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 |
| This theorem is referenced by: radcnvcl 26342 radcnvrat 44290 |
| Copyright terms: Public domain | W3C validator |