MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Visualization version   GIF version

Theorem radcnv0 26474
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
Assertion
Ref Expression
radcnv0 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnv0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . 4 (𝑟 = 0 → (𝐺𝑟) = (𝐺‘0))
21seqeq3d 14047 . . 3 (𝑟 = 0 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺‘0)))
32eleq1d 2824 . 2 (𝑟 = 0 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘0)) ∈ dom ⇝ ))
4 0red 11262 . 2 (𝜑 → 0 ∈ ℝ)
5 nn0uz 12918 . . 3 0 = (ℤ‘0)
6 0zd 12623 . . 3 (𝜑 → 0 ∈ ℤ)
7 snfi 9082 . . . 4 {0} ∈ Fin
87a1i 11 . . 3 (𝜑 → {0} ∈ Fin)
9 0nn0 12539 . . . . 5 0 ∈ ℕ0
109a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
1110snssd 4814 . . 3 (𝜑 → {0} ⊆ ℕ0)
12 ifid 4571 . . . 4 if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = ((𝐺‘0)‘𝑘)
13 0cnd 11252 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
14 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
1514pserval2 26469 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1613, 15sylan 580 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
1716adantr 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = ((𝐴𝑘) · (0↑𝑘)))
18 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
19 elnn0 12526 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2018, 19sylib 218 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2120ord 864 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 = 0))
22 velsn 4647 . . . . . . . . . . 11 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2321, 22imbitrrdi 252 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ ℕ → 𝑘 ∈ {0}))
2423con1d 145 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (¬ 𝑘 ∈ {0} → 𝑘 ∈ ℕ))
2524imp 406 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → 𝑘 ∈ ℕ)
26250expd 14176 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (0↑𝑘) = 0)
2726oveq2d 7447 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · (0↑𝑘)) = ((𝐴𝑘) · 0))
28 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
2928ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3029adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → (𝐴𝑘) ∈ ℂ)
3130mul01d 11458 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐴𝑘) · 0) = 0)
3217, 27, 313eqtrd 2779 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) = 0)
3332ifeq2da 4563 . . . 4 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), ((𝐺‘0)‘𝑘)) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3412, 33eqtr3id 2789 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) = if(𝑘 ∈ {0}, ((𝐺‘0)‘𝑘), 0))
3511sselda 3995 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝑘 ∈ ℕ0)
3614, 28, 13psergf 26470 . . . . 5 (𝜑 → (𝐺‘0):ℕ0⟶ℂ)
3736ffvelcdmda 7104 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐺‘0)‘𝑘) ∈ ℂ)
3835, 37syldan 591 . . 3 ((𝜑𝑘 ∈ {0}) → ((𝐺‘0)‘𝑘) ∈ ℂ)
395, 6, 8, 11, 34, 38fsumcvg3 15762 . 2 (𝜑 → seq0( + , (𝐺‘0)) ∈ dom ⇝ )
403, 4, 39elrabd 3697 1 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  {crab 3433  ifcif 4531  {csn 4631  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  cn 12264  0cn0 12524  seqcseq 14039  cexp 14099  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  radcnvcl  26475  radcnvrat  44310
  Copyright terms: Public domain W3C validator