MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem2 26866
Description: Lemma for dchrvmasum 26889. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
rpvmasum.g 𝐺 = (DChrβ€˜π‘)
rpvmasum.d 𝐷 = (Baseβ€˜πΊ)
rpvmasum.1 1 = (0gβ€˜πΊ)
dchrisum.b (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrisum.n1 (πœ‘ β†’ 𝑋 β‰  1 )
dchrvmasumif.f 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
dchrvmasumif.c (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
dchrvmasumif.s (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑆)) ≀ (𝐢 / 𝑦))
dchrvmasumif.g 𝐾 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· ((logβ€˜π‘Ž) / π‘Ž)))
dchrvmasumif.e (πœ‘ β†’ 𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (πœ‘ β†’ seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (πœ‘ β†’ βˆ€π‘¦ ∈ (3[,)+∞)(absβ€˜((seq1( + , 𝐾)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑇)) ≀ (𝐸 Β· ((logβ€˜π‘¦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,𝑛,𝑦, 1   𝐢,𝑛,π‘₯,𝑦   𝑛,𝐹,π‘₯,𝑦   π‘₯,π‘Ž,𝑦   π‘₯,𝐸,𝑦   𝑦,𝐾   𝑛,𝑁,π‘₯,𝑦   πœ‘,𝑛,π‘₯   𝑇,𝑛,π‘₯,𝑦   𝑆,𝑛,π‘₯,𝑦   𝑛,𝑍,π‘₯,𝑦   𝐷,𝑛,π‘₯,𝑦   𝑛,π‘Ž,𝐿,π‘₯,𝑦   𝑋,π‘Ž,𝑛,π‘₯,𝑦
Allowed substitution hints:   πœ‘(𝑦,π‘Ž)   𝐢(π‘Ž)   𝐷(π‘Ž)   𝑆(π‘Ž)   𝑇(π‘Ž)   1 (π‘Ž)   𝐸(𝑛,π‘Ž)   𝐹(π‘Ž)   𝐺(π‘₯,𝑦,𝑛,π‘Ž)   𝐾(π‘₯,𝑛,π‘Ž)   𝑁(π‘Ž)   𝑍(π‘Ž)

Proof of Theorem dchrvmasumiflem2
Dummy variables π‘˜ 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11163 . 2 (πœ‘ β†’ 1 ∈ ℝ)
2 fzfid 13885 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
3 rpvmasum.g . . . . . . . 8 𝐺 = (DChrβ€˜π‘)
4 rpvmasum.z . . . . . . . 8 𝑍 = (β„€/nβ„€β€˜π‘)
5 rpvmasum.d . . . . . . . 8 𝐷 = (Baseβ€˜πΊ)
6 rpvmasum.l . . . . . . . 8 𝐿 = (β„€RHomβ€˜π‘)
7 dchrisum.b . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ 𝐷)
87ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑋 ∈ 𝐷)
9 elfzelz 13448 . . . . . . . . 9 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„€)
109adantl 483 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„€)
113, 4, 5, 6, 8, 10dchrzrhcl 26609 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘‹β€˜(πΏβ€˜π‘‘)) ∈ β„‚)
12 elfznn 13477 . . . . . . . . . . . 12 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ β„•)
1312adantl 483 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑑 ∈ β„•)
14 mucl 26506 . . . . . . . . . . 11 (𝑑 ∈ β„• β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
1513, 14syl 17 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ β„€)
1615zred 12614 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (ΞΌβ€˜π‘‘) ∈ ℝ)
1716, 13nndivred 12214 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ ℝ)
1817recnd 11190 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((ΞΌβ€˜π‘‘) / 𝑑) ∈ β„‚)
1911, 18mulcld 11182 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) ∈ β„‚)
202, 19fsumcl 15625 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) ∈ β„‚)
21 dchrvmasumif.s . . . . . . 7 (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑆)
22 climcl 15388 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆 β†’ 𝑆 ∈ β„‚)
2321, 22syl 17 . . . . . 6 (πœ‘ β†’ 𝑆 ∈ β„‚)
2423adantr 482 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ 𝑆 ∈ β„‚)
2520, 24mulcld 11182 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) ∈ β„‚)
26 0cnd 11155 . . . . . 6 ((πœ‘ ∧ 𝑆 = 0) β†’ 0 ∈ β„‚)
27 df-ne 2945 . . . . . . 7 (𝑆 β‰  0 ↔ Β¬ 𝑆 = 0)
28 dchrvmasumif.t . . . . . . . . . 10 (πœ‘ β†’ seq1( + , 𝐾) ⇝ 𝑇)
29 climcl 15388 . . . . . . . . . 10 (seq1( + , 𝐾) ⇝ 𝑇 β†’ 𝑇 ∈ β„‚)
3028, 29syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑇 ∈ β„‚)
3130adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝑆 β‰  0) β†’ 𝑇 ∈ β„‚)
3223adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝑆 β‰  0) β†’ 𝑆 ∈ β„‚)
33 simpr 486 . . . . . . . 8 ((πœ‘ ∧ 𝑆 β‰  0) β†’ 𝑆 β‰  0)
3431, 32, 33divcld 11938 . . . . . . 7 ((πœ‘ ∧ 𝑆 β‰  0) β†’ (𝑇 / 𝑆) ∈ β„‚)
3527, 34sylan2br 596 . . . . . 6 ((πœ‘ ∧ Β¬ 𝑆 = 0) β†’ (𝑇 / 𝑆) ∈ β„‚)
3626, 35ifclda 4526 . . . . 5 (πœ‘ β†’ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ β„‚)
3736adantr 482 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ β„‚)
38 rpvmasum.a . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„•)
39 rpvmasum.1 . . . . 5 1 = (0gβ€˜πΊ)
40 dchrisum.n1 . . . . 5 (πœ‘ β†’ 𝑋 β‰  1 )
41 dchrvmasumif.f . . . . 5 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
42 dchrvmasumif.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
43 dchrvmasumif.1 . . . . 5 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑆)) ≀ (𝐢 / 𝑦))
444, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43dchrmusum2 26858 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆)) ∈ 𝑂(1))
45 rpssre 12929 . . . . 5 ℝ+ βŠ† ℝ
46 o1const 15509 . . . . 5 ((ℝ+ βŠ† ℝ ∧ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ β„‚) β†’ (π‘₯ ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4745, 36, 46sylancr 588 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4825, 37, 44, 47o1mul2 15514 . . 3 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1))
49 fzfid 13885 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) ∈ Fin)
508adantr 482 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ 𝑋 ∈ 𝐷)
51 elfzelz 13448 . . . . . . . . . 10 (π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) β†’ π‘˜ ∈ β„€)
5251adantl 483 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ π‘˜ ∈ β„€)
533, 4, 5, 6, 50, 52dchrzrhcl 26609 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (π‘‹β€˜(πΏβ€˜π‘˜)) ∈ β„‚)
54 simpr 486 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ π‘₯ ∈ ℝ+)
5512nnrpd 12962 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑑 ∈ ℝ+)
56 rpdivcl 12947 . . . . . . . . . . . . 13 ((π‘₯ ∈ ℝ+ ∧ 𝑑 ∈ ℝ+) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
5754, 55, 56syl2an 597 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘₯ / 𝑑) ∈ ℝ+)
58 elfznn 13477 . . . . . . . . . . . . 13 (π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) β†’ π‘˜ ∈ β„•)
5958nnrpd 12962 . . . . . . . . . . . 12 (π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑))) β†’ π‘˜ ∈ ℝ+)
60 ifcl 4536 . . . . . . . . . . . 12 (((π‘₯ / 𝑑) ∈ ℝ+ ∧ π‘˜ ∈ ℝ+) β†’ if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜) ∈ ℝ+)
6157, 59, 60syl2an 597 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜) ∈ ℝ+)
6261relogcld 25994 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ (logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) ∈ ℝ)
6358adantl 483 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ π‘˜ ∈ β„•)
6462, 63nndivred 12214 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜) ∈ ℝ)
6564recnd 11190 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜) ∈ β„‚)
6653, 65mulcld 11182 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) ∧ π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))) β†’ ((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) ∈ β„‚)
6749, 66fsumcl 15625 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) ∈ β„‚)
6819, 67mulcld 11182 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) ∈ β„‚)
692, 68fsumcl 15625 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) ∈ β„‚)
7025, 37mulcld 11182 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ β„‚)
71 0cn 11154 . . . . . . . . . 10 0 ∈ β„‚
7230ad2antrr 725 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑇 ∈ β„‚)
73 ifcl 4536 . . . . . . . . . 10 ((0 ∈ β„‚ ∧ 𝑇 ∈ β„‚) β†’ if(𝑆 = 0, 0, 𝑇) ∈ β„‚)
7471, 72, 73sylancr 588 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ if(𝑆 = 0, 0, 𝑇) ∈ β„‚)
7519, 67, 74subdid 11618 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) βˆ’ if(𝑆 = 0, 0, 𝑇))) = ((((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇))))
7675sumeq2dv 15595 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) βˆ’ if(𝑆 = 0, 0, 𝑇))) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇))))
7719, 74mulcld 11182 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑑 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇)) ∈ β„‚)
782, 68, 77fsumsub 15680 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ (((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇))))
7920, 24, 37mulassd 11185 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝑆 Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
80 ovif2 7460 . . . . . . . . . . . 12 (𝑆 Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, (𝑆 Β· 0), (𝑆 Β· (𝑇 / 𝑆)))
8123mul01d 11361 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝑆 Β· 0) = 0)
8281ifeq1d 4510 . . . . . . . . . . . . 13 (πœ‘ β†’ if(𝑆 = 0, (𝑆 Β· 0), (𝑆 Β· (𝑇 / 𝑆))) = if(𝑆 = 0, 0, (𝑆 Β· (𝑇 / 𝑆))))
8331, 32, 33divcan2d 11940 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑆 β‰  0) β†’ (𝑆 Β· (𝑇 / 𝑆)) = 𝑇)
8427, 83sylan2br 596 . . . . . . . . . . . . . 14 ((πœ‘ ∧ Β¬ 𝑆 = 0) β†’ (𝑆 Β· (𝑇 / 𝑆)) = 𝑇)
8584ifeq2da 4523 . . . . . . . . . . . . 13 (πœ‘ β†’ if(𝑆 = 0, 0, (𝑆 Β· (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8682, 85eqtrd 2777 . . . . . . . . . . . 12 (πœ‘ β†’ if(𝑆 = 0, (𝑆 Β· 0), (𝑆 Β· (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8780, 86eqtrid 2789 . . . . . . . . . . 11 (πœ‘ β†’ (𝑆 Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8887adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (𝑆 Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8988oveq2d 7378 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (𝑆 Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇)))
9071, 30, 73sylancr 588 . . . . . . . . . . 11 (πœ‘ β†’ if(𝑆 = 0, 0, 𝑇) ∈ β„‚)
9190adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ if(𝑆 = 0, 0, 𝑇) ∈ β„‚)
922, 91, 19fsummulc1 15677 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇)) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇)))
9379, 89, 923eqtrrd 2782 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇)) = ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))))
9493oveq2d 7378 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9576, 78, 943eqtrd 2781 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) βˆ’ if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9695mpteq2dva 5210 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) βˆ’ if(𝑆 = 0, 0, 𝑇)))) = (π‘₯ ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))))))
97 dchrvmasumif.g . . . . . 6 𝐾 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) Β· ((logβ€˜π‘Ž) / π‘Ž)))
98 dchrvmasumif.e . . . . . 6 (πœ‘ β†’ 𝐸 ∈ (0[,)+∞))
99 dchrvmasumif.2 . . . . . 6 (πœ‘ β†’ βˆ€π‘¦ ∈ (3[,)+∞)(absβ€˜((seq1( + , 𝐾)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑇)) ≀ (𝐸 Β· ((logβ€˜π‘¦) / 𝑦)))
1004, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99dchrvmasumiflem1 26865 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· (Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)) βˆ’ if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
10196, 100eqeltrrd 2839 . . . 4 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))) βˆ’ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆))))) ∈ 𝑂(1))
10269, 70, 101o1dif 15519 . . 3 (πœ‘ β†’ ((π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)))) ∈ 𝑂(1) ↔ (π‘₯ ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· 𝑆) Β· if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1)))
10348, 102mpbird 257 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)))) ∈ 𝑂(1))
1047ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑋 ∈ 𝐷)
105 elfzelz 13448 . . . . . . 7 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„€)
106105adantl 483 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„€)
1073, 4, 5, 6, 104, 106dchrzrhcl 26609 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘‹β€˜(πΏβ€˜π‘›)) ∈ β„‚)
108 elfznn 13477 . . . . . . . 8 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„•)
109108adantl 483 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„•)
110 vmacl 26483 . . . . . . . 8 (𝑛 ∈ β„• β†’ (Ξ›β€˜π‘›) ∈ ℝ)
111 nndivre 12201 . . . . . . . 8 (((Ξ›β€˜π‘›) ∈ ℝ ∧ 𝑛 ∈ β„•) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
112110, 111mpancom 687 . . . . . . 7 (𝑛 ∈ β„• β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
113109, 112syl 17 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
114113recnd 11190 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ β„‚)
115107, 114mulcld 11182 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) ∈ β„‚)
1162, 115fsumcl 15625 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) ∈ β„‚)
117 relogcl 25947 . . . . . 6 (π‘₯ ∈ ℝ+ β†’ (logβ€˜π‘₯) ∈ ℝ)
118117adantl 483 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (logβ€˜π‘₯) ∈ ℝ)
119118recnd 11190 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (logβ€˜π‘₯) ∈ β„‚)
120 ifcl 4536 . . . 4 (((logβ€˜π‘₯) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ if(𝑆 = 0, (logβ€˜π‘₯), 0) ∈ β„‚)
121119, 71, 120sylancl 587 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ if(𝑆 = 0, (logβ€˜π‘₯), 0) ∈ β„‚)
122116, 121addcld 11181 . 2 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0)) ∈ β„‚)
123122abscld 15328 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (absβ€˜(Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) ∈ ℝ)
124123adantrr 716 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜(Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) ∈ ℝ)
12538adantr 482 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 𝑁 ∈ β„•)
1267adantr 482 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 𝑋 ∈ 𝐷)
12740adantr 482 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 𝑋 β‰  1 )
128 simprl 770 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ π‘₯ ∈ ℝ+)
129 simprr 772 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ 1 ≀ π‘₯)
1304, 6, 125, 3, 5, 39, 126, 127, 128, 129dchrvmasum2if 26861 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0)) = Σ𝑑 ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜))))
131130fveq2d 6851 . . 3 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜(Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) = (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)))))
132124, 131eqled 11265 . 2 ((πœ‘ ∧ (π‘₯ ∈ ℝ+ ∧ 1 ≀ π‘₯)) β†’ (absβ€˜(Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) ≀ (absβ€˜Ξ£π‘‘ ∈ (1...(βŒŠβ€˜π‘₯))(((π‘‹β€˜(πΏβ€˜π‘‘)) Β· ((ΞΌβ€˜π‘‘) / 𝑑)) Β· Ξ£π‘˜ ∈ (1...(βŒŠβ€˜(π‘₯ / 𝑑)))((π‘‹β€˜(πΏβ€˜π‘˜)) Β· ((logβ€˜if(𝑆 = 0, (π‘₯ / 𝑑), π‘˜)) / π‘˜)))))
1331, 103, 69, 122, 132o1le 15544 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑆 = 0, (logβ€˜π‘₯), 0))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆ€wral 3065   βŠ† wss 3915  ifcif 4491   class class class wbr 5110   ↦ cmpt 5193  β€˜cfv 6501  (class class class)co 7362  β„‚cc 11056  β„cr 11057  0cc0 11058  1c1 11059   + caddc 11061   Β· cmul 11063  +∞cpnf 11193   ≀ cle 11197   βˆ’ cmin 11392   / cdiv 11819  β„•cn 12160  3c3 12216  β„€cz 12506  β„+crp 12922  [,)cico 13273  ...cfz 13431  βŒŠcfl 13702  seqcseq 13913  abscabs 15126   ⇝ cli 15373  π‘‚(1)co1 15375  Ξ£csu 15577  Basecbs 17090  0gc0g 17328  β„€RHomczrh 20916  β„€/nβ„€czn 20919  logclog 25926  Ξ›cvma 26457  ΞΌcmu 26460  DChrcdchr 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-acn 9885  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-o1 15379  df-lo1 15380  df-sum 15578  df-ef 15957  df-e 15958  df-sin 15959  df-cos 15960  df-tan 15961  df-pi 15962  df-dvds 16144  df-gcd 16382  df-prm 16555  df-pc 16716  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-qus 17398  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-nsg 18933  df-eqg 18934  df-ghm 19013  df-cntz 19104  df-od 19317  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-cring 19974  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-dvr 20119  df-rnghom 20155  df-drng 20201  df-subrg 20236  df-lmod 20340  df-lss 20409  df-lsp 20449  df-sra 20649  df-rgmod 20650  df-lidl 20651  df-rsp 20652  df-2idl 20718  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-zring 20886  df-zrh 20920  df-zn 20923  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-cmp 22754  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-ulm 25752  df-log 25928  df-cxp 25929  df-atan 26233  df-em 26358  df-vma 26463  df-mu 26466  df-dchr 26597
This theorem is referenced by:  dchrvmasumif  26867
  Copyright terms: Public domain W3C validator