MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem2 26650
Description: Lemma for dchrvmasum 26673. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝑦, 1   𝐶,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑥,𝑎,𝑦   𝑥,𝐸,𝑦   𝑦,𝐾   𝑛,𝑁,𝑥,𝑦   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑛,𝑎,𝐿,𝑥,𝑦   𝑋,𝑎,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   𝑇(𝑎)   1 (𝑎)   𝐸(𝑛,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑛,𝑎)   𝐾(𝑥,𝑛,𝑎)   𝑁(𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmasumiflem2
Dummy variables 𝑘 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10976 . 2 (𝜑 → 1 ∈ ℝ)
2 fzfid 13693 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
3 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
4 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
5 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
6 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
7 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
87ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
9 elfzelz 13256 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
109adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
113, 4, 5, 6, 8, 10dchrzrhcl 26393 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
12 elfznn 13285 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1312adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
14 mucl 26290 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
1615zred 12426 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℝ)
1716, 13nndivred 12027 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 11003 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1911, 18mulcld 10995 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
202, 19fsumcl 15445 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
21 dchrvmasumif.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
22 climcl 15208 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
2321, 22syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
2423adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑆 ∈ ℂ)
2520, 24mulcld 10995 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) ∈ ℂ)
26 0cnd 10968 . . . . . 6 ((𝜑𝑆 = 0) → 0 ∈ ℂ)
27 df-ne 2944 . . . . . . 7 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
28 dchrvmasumif.t . . . . . . . . . 10 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
29 climcl 15208 . . . . . . . . . 10 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
3028, 29syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
3130adantr 481 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑇 ∈ ℂ)
3223adantr 481 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
33 simpr 485 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ≠ 0)
3431, 32, 33divcld 11751 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑇 / 𝑆) ∈ ℂ)
3527, 34sylan2br 595 . . . . . 6 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑇 / 𝑆) ∈ ℂ)
3626, 35ifclda 4494 . . . . 5 (𝜑 → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
3736adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
38 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
39 rpvmasum.1 . . . . 5 1 = (0g𝐺)
40 dchrisum.n1 . . . . 5 (𝜑𝑋1 )
41 dchrvmasumif.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
42 dchrvmasumif.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
43 dchrvmasumif.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
444, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43dchrmusum2 26642 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆)) ∈ 𝑂(1))
45 rpssre 12737 . . . . 5 + ⊆ ℝ
46 o1const 15329 . . . . 5 ((ℝ+ ⊆ ℝ ∧ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4745, 36, 46sylancr 587 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4825, 37, 44, 47o1mul2 15334 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1))
49 fzfid 13693 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
508adantr 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
51 elfzelz 13256 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℤ)
5251adantl 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℤ)
533, 4, 5, 6, 50, 52dchrzrhcl 26393 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
54 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5512nnrpd 12770 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
56 rpdivcl 12755 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
5754, 55, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
58 elfznn 13285 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℕ)
5958nnrpd 12770 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℝ+)
60 ifcl 4504 . . . . . . . . . . . 12 (((𝑥 / 𝑑) ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6157, 59, 60syl2an 596 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6261relogcld 25778 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) ∈ ℝ)
6358adantl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℕ)
6462, 63nndivred 12027 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℝ)
6564recnd 11003 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℂ)
6653, 65mulcld 10995 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6749, 66fsumcl 15445 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6819, 67mulcld 10995 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
692, 68fsumcl 15445 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
7025, 37mulcld 10995 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ ℂ)
71 0cn 10967 . . . . . . . . . 10 0 ∈ ℂ
7230ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
73 ifcl 4504 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7471, 72, 73sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7519, 67, 74subdid 11431 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7675sumeq2dv 15415 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7719, 74mulcld 10995 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
782, 68, 77fsumsub 15500 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7920, 24, 37mulassd 10998 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
80 ovif2 7373 . . . . . . . . . . . 12 (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆)))
8123mul01d 11174 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 · 0) = 0)
8281ifeq1d 4478 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))))
8331, 32, 33divcan2d 11753 . . . . . . . . . . . . . . 15 ((𝜑𝑆 ≠ 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8427, 83sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8584ifeq2da 4491 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8682, 85eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8780, 86eqtrid 2790 . . . . . . . . . . 11 (𝜑 → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8887adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8988oveq2d 7291 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9071, 30, 73sylancr 587 . . . . . . . . . . 11 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
9190adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
922, 91, 19fsummulc1 15497 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9379, 89, 923eqtrrd 2783 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))
9493oveq2d 7291 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9576, 78, 943eqtrd 2782 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9695mpteq2dva 5174 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))))
97 dchrvmasumif.g . . . . . 6 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
98 dchrvmasumif.e . . . . . 6 (𝜑𝐸 ∈ (0[,)+∞))
99 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
1004, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99dchrvmasumiflem1 26649 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
10196, 100eqeltrrd 2840 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) ∈ 𝑂(1))
10269, 70, 101o1dif 15339 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1)))
10348, 102mpbird 256 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1))
1047ad2antrr 723 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
105 elfzelz 13256 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
106105adantl 482 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1073, 4, 5, 6, 104, 106dchrzrhcl 26393 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
108 elfznn 13285 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109108adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
110 vmacl 26267 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
111 nndivre 12014 . . . . . . . 8 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
112110, 111mpancom 685 . . . . . . 7 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
113109, 112syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
114113recnd 11003 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
115107, 114mulcld 10995 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1162, 115fsumcl 15445 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
117 relogcl 25731 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
118117adantl 482 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
119118recnd 11003 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
120 ifcl 4504 . . . 4 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
121119, 71, 120sylancl 586 . . 3 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
122116, 121addcld 10994 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) ∈ ℂ)
123122abscld 15148 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
124123adantrr 714 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
12538adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ ℕ)
1267adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝐷)
12740adantr 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋1 )
128 simprl 768 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
129 simprr 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
1304, 6, 125, 3, 5, 39, 126, 127, 128, 129dchrvmasum2if 26645 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))
131130fveq2d 6778 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
132124, 131eqled 11078 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
1331, 103, 69, 122, 132o1le 15364 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  cle 11010  cmin 11205   / cdiv 11632  cn 11973  3c3 12029  cz 12319  +crp 12730  [,)cico 13081  ...cfz 13239  cfl 13510  seqcseq 13721  abscabs 14945  cli 15193  𝑂(1)co1 15195  Σcsu 15397  Basecbs 16912  0gc0g 17150  ℤRHomczrh 20701  ℤ/nczn 20704  logclog 25710  Λcvma 26241  μcmu 26244  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-vma 26247  df-mu 26250  df-dchr 26381
This theorem is referenced by:  dchrvmasumif  26651
  Copyright terms: Public domain W3C validator