MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumiflem2 27413
Description: Lemma for dchrvmasum 27436. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasumif.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrvmasumif.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasumif.s (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
dchrvmasumif.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
dchrvmasumif.g 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
dchrvmasumif.e (𝜑𝐸 ∈ (0[,)+∞))
dchrvmasumif.t (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
dchrvmasumif.2 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
Assertion
Ref Expression
dchrvmasumiflem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑛,𝑦, 1   𝐶,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑥,𝑎,𝑦   𝑥,𝐸,𝑦   𝑦,𝐾   𝑛,𝑁,𝑥,𝑦   𝜑,𝑛,𝑥   𝑇,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑛,𝑎,𝐿,𝑥,𝑦   𝑋,𝑎,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑆(𝑎)   𝑇(𝑎)   1 (𝑎)   𝐸(𝑛,𝑎)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑛,𝑎)   𝐾(𝑥,𝑛,𝑎)   𝑁(𝑎)   𝑍(𝑎)

Proof of Theorem dchrvmasumiflem2
Dummy variables 𝑘 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11175 . 2 (𝜑 → 1 ∈ ℝ)
2 fzfid 13938 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
3 rpvmasum.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
4 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
5 rpvmasum.d . . . . . . . 8 𝐷 = (Base‘𝐺)
6 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
7 dchrisum.b . . . . . . . . 9 (𝜑𝑋𝐷)
87ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
9 elfzelz 13485 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
109adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
113, 4, 5, 6, 8, 10dchrzrhcl 27156 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
12 elfznn 13514 . . . . . . . . . . . 12 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1312adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
14 mucl 27051 . . . . . . . . . . 11 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
1513, 14syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
1615zred 12638 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℝ)
1716, 13nndivred 12240 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
1817recnd 11202 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
1911, 18mulcld 11194 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
202, 19fsumcl 15699 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
21 dchrvmasumif.s . . . . . . 7 (𝜑 → seq1( + , 𝐹) ⇝ 𝑆)
22 climcl 15465 . . . . . . 7 (seq1( + , 𝐹) ⇝ 𝑆𝑆 ∈ ℂ)
2321, 22syl 17 . . . . . 6 (𝜑𝑆 ∈ ℂ)
2423adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑆 ∈ ℂ)
2520, 24mulcld 11194 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) ∈ ℂ)
26 0cnd 11167 . . . . . 6 ((𝜑𝑆 = 0) → 0 ∈ ℂ)
27 df-ne 2926 . . . . . . 7 (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0)
28 dchrvmasumif.t . . . . . . . . . 10 (𝜑 → seq1( + , 𝐾) ⇝ 𝑇)
29 climcl 15465 . . . . . . . . . 10 (seq1( + , 𝐾) ⇝ 𝑇𝑇 ∈ ℂ)
3028, 29syl 17 . . . . . . . . 9 (𝜑𝑇 ∈ ℂ)
3130adantr 480 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑇 ∈ ℂ)
3223adantr 480 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ ℂ)
33 simpr 484 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → 𝑆 ≠ 0)
3431, 32, 33divcld 11958 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑇 / 𝑆) ∈ ℂ)
3527, 34sylan2br 595 . . . . . 6 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑇 / 𝑆) ∈ ℂ)
3626, 35ifclda 4524 . . . . 5 (𝜑 → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
3736adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ)
38 rpvmasum.a . . . . 5 (𝜑𝑁 ∈ ℕ)
39 rpvmasum.1 . . . . 5 1 = (0g𝐺)
40 dchrisum.n1 . . . . 5 (𝜑𝑋1 )
41 dchrvmasumif.f . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
42 dchrvmasumif.c . . . . 5 (𝜑𝐶 ∈ (0[,)+∞))
43 dchrvmasumif.1 . . . . 5 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦))
444, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43dchrmusum2 27405 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆)) ∈ 𝑂(1))
45 rpssre 12959 . . . . 5 + ⊆ ℝ
46 o1const 15586 . . . . 5 ((ℝ+ ⊆ ℝ ∧ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4745, 36, 46sylancr 587 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1))
4825, 37, 44, 47o1mul2 15591 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1))
49 fzfid 13938 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
508adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
51 elfzelz 13485 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℤ)
5251adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℤ)
533, 4, 5, 6, 50, 52dchrzrhcl 27156 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑘)) ∈ ℂ)
54 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5512nnrpd 12993 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
56 rpdivcl 12978 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
5754, 55, 56syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
58 elfznn 13514 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℕ)
5958nnrpd 12993 . . . . . . . . . . . 12 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑘 ∈ ℝ+)
60 ifcl 4534 . . . . . . . . . . . 12 (((𝑥 / 𝑑) ∈ ℝ+𝑘 ∈ ℝ+) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6157, 59, 60syl2an 596 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈ ℝ+)
6261relogcld 26532 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) ∈ ℝ)
6358adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑘 ∈ ℕ)
6462, 63nndivred 12240 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℝ)
6564recnd 11202 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℂ)
6653, 65mulcld 11194 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6749, 66fsumcl 15699 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ)
6819, 67mulcld 11194 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
692, 68fsumcl 15699 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ)
7025, 37mulcld 11194 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ ℂ)
71 0cn 11166 . . . . . . . . . 10 0 ∈ ℂ
7230ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
73 ifcl 4534 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 𝑇 ∈ ℂ) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7471, 72, 73sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
7519, 67, 74subdid 11634 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7675sumeq2dv 15668 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7719, 74mulcld 11194 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) ∈ ℂ)
782, 68, 77fsumsub 15754 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))))
7920, 24, 37mulassd 11197 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
80 ovif2 7488 . . . . . . . . . . . 12 (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆)))
8123mul01d 11373 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 · 0) = 0)
8281ifeq1d 4508 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))))
8331, 32, 33divcan2d 11960 . . . . . . . . . . . . . . 15 ((𝜑𝑆 ≠ 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8427, 83sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇)
8584ifeq2da 4521 . . . . . . . . . . . . 13 (𝜑 → if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8682, 85eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8780, 86eqtrid 2776 . . . . . . . . . . 11 (𝜑 → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8887adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇))
8988oveq2d 7403 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9071, 30, 73sylancr 587 . . . . . . . . . . 11 (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
9190adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ)
922, 91, 19fsummulc1 15751 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))
9379, 89, 923eqtrrd 2769 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))
9493oveq2d 7403 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9576, 78, 943eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))
9695mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))))
97 dchrvmasumif.g . . . . . 6 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) · ((log‘𝑎) / 𝑎)))
98 dchrvmasumif.e . . . . . 6 (𝜑𝐸 ∈ (0[,)+∞))
99 dchrvmasumif.2 . . . . . 6 (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + , 𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦)))
1004, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99dchrvmasumiflem1 27412 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1))
10196, 100eqeltrrd 2829 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) ∈ 𝑂(1))
10269, 70, 101o1dif 15596 . . 3 (𝜑 → ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1)))
10348, 102mpbird 257 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1))
1047ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
105 elfzelz 13485 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
106105adantl 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1073, 4, 5, 6, 104, 106dchrzrhcl 27156 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
108 elfznn 13514 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109108adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
110 vmacl 27028 . . . . . . . 8 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
111 nndivre 12227 . . . . . . . 8 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
112110, 111mpancom 688 . . . . . . 7 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
113109, 112syl 17 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
114113recnd 11202 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
115107, 114mulcld 11194 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
1162, 115fsumcl 15699 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
117 relogcl 26484 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
118117adantl 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
119118recnd 11202 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
120 ifcl 4534 . . . 4 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
121119, 71, 120sylancl 586 . . 3 ((𝜑𝑥 ∈ ℝ+) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ)
122116, 121addcld 11193 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) ∈ ℂ)
123122abscld 15405 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
124123adantrr 717 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ)
12538adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈ ℕ)
1267adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝐷)
12740adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋1 )
128 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
129 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
1304, 6, 125, 3, 5, 39, 126, 127, 128, 129dchrvmasum2if 27408 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))
131130fveq2d 6862 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
132124, 131eqled 11277 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ≤ (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))))
1331, 103, 69, 122, 132o1le 15619 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  cle 11209  cmin 11405   / cdiv 11835  cn 12186  3c3 12242  cz 12529  +crp 12951  [,)cico 13308  ...cfz 13468  cfl 13752  seqcseq 13966  abscabs 15200  cli 15450  𝑂(1)co1 15452  Σcsu 15652  Basecbs 17179  0gc0g 17402  ℤRHomczrh 21409  ℤ/nczn 21412  logclog 26463  Λcvma 27002  μcmu 27005  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-qus 17472  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903  df-vma 27008  df-mu 27011  df-dchr 27144
This theorem is referenced by:  dchrvmasumif  27414
  Copyright terms: Public domain W3C validator