Step | Hyp | Ref
| Expression |
1 | | 1red 10907 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | fzfid 13621 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
3 | | rpvmasum.g |
. . . . . . . 8
⊢ 𝐺 = (DChr‘𝑁) |
4 | | rpvmasum.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
5 | | rpvmasum.d |
. . . . . . . 8
⊢ 𝐷 = (Base‘𝐺) |
6 | | rpvmasum.l |
. . . . . . . 8
⊢ 𝐿 = (ℤRHom‘𝑍) |
7 | | dchrisum.b |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
8 | 7 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑋 ∈ 𝐷) |
9 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℤ) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℤ) |
11 | 3, 4, 5, 6, 8, 10 | dchrzrhcl 26298 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑋‘(𝐿‘𝑑)) ∈ ℂ) |
12 | | elfznn 13214 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
13 | 12 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
14 | | mucl 26195 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ →
(μ‘𝑑) ∈
ℤ) |
15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑑)
∈ ℤ) |
16 | 15 | zred 12355 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑑)
∈ ℝ) |
17 | 16, 13 | nndivred 11957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑑) /
𝑑) ∈
ℝ) |
18 | 17 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑑) /
𝑑) ∈
ℂ) |
19 | 11, 18 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ) |
20 | 2, 19 | fsumcl 15373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ) |
21 | | dchrvmasumif.s |
. . . . . . 7
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑆) |
22 | | climcl 15136 |
. . . . . . 7
⊢ (seq1( +
, 𝐹) ⇝ 𝑆 → 𝑆 ∈ ℂ) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℂ) |
24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑆 ∈
ℂ) |
25 | 20, 24 | mulcld 10926 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) ∈ ℂ) |
26 | | 0cnd 10899 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑆 = 0) → 0 ∈
ℂ) |
27 | | df-ne 2943 |
. . . . . . 7
⊢ (𝑆 ≠ 0 ↔ ¬ 𝑆 = 0) |
28 | | dchrvmasumif.t |
. . . . . . . . . 10
⊢ (𝜑 → seq1( + , 𝐾) ⇝ 𝑇) |
29 | | climcl 15136 |
. . . . . . . . . 10
⊢ (seq1( +
, 𝐾) ⇝ 𝑇 → 𝑇 ∈ ℂ) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ ℂ) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝑇 ∈ ℂ) |
32 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℂ) |
33 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → 𝑆 ≠ 0) |
34 | 31, 32, 33 | divcld 11681 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝑇 / 𝑆) ∈ ℂ) |
35 | 27, 34 | sylan2br 594 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑇 / 𝑆) ∈ ℂ) |
36 | 26, 35 | ifclda 4491 |
. . . . 5
⊢ (𝜑 → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) |
37 | 36 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) |
38 | | rpvmasum.a |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
39 | | rpvmasum.1 |
. . . . 5
⊢ 1 =
(0g‘𝐺) |
40 | | dchrisum.n1 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ 1 ) |
41 | | dchrvmasumif.f |
. . . . 5
⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
42 | | dchrvmasumif.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
43 | | dchrvmasumif.1 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + ,
𝐹)‘(⌊‘𝑦)) − 𝑆)) ≤ (𝐶 / 𝑦)) |
44 | 4, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43 | dchrmusum2 26547 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆)) ∈ 𝑂(1)) |
45 | | rpssre 12666 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
46 | | o1const 15257 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ if(𝑆 = 0, 0, (𝑇 / 𝑆)) ∈ ℂ) → (𝑥 ∈ ℝ+
↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1)) |
47 | 45, 36, 46 | sylancr 586 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ 𝑂(1)) |
48 | 25, 37, 44, 47 | o1mul2 15262 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1)) |
49 | | fzfid 13621 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin) |
50 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑋 ∈ 𝐷) |
51 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑))) → 𝑘 ∈
ℤ) |
52 | 51 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑘 ∈
ℤ) |
53 | 3, 4, 5, 6, 50, 52 | dchrzrhcl 26298 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → (𝑋‘(𝐿‘𝑘)) ∈ ℂ) |
54 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
55 | 12 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) |
56 | | rpdivcl 12684 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) |
57 | 54, 55, 56 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) |
58 | | elfznn 13214 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑))) → 𝑘 ∈
ℕ) |
59 | 58 | nnrpd 12699 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑))) → 𝑘 ∈
ℝ+) |
60 | | ifcl 4501 |
. . . . . . . . . . . 12
⊢ (((𝑥 / 𝑑) ∈ ℝ+ ∧ 𝑘 ∈ ℝ+)
→ if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈
ℝ+) |
61 | 57, 59, 60 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → if(𝑆 = 0, (𝑥 / 𝑑), 𝑘) ∈
ℝ+) |
62 | 61 | relogcld 25683 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
(log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) ∈ ℝ) |
63 | 58 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → 𝑘 ∈
ℕ) |
64 | 62, 63 | nndivred 11957 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
((log‘if(𝑆 = 0,
(𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℝ) |
65 | 64 | recnd 10934 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) →
((log‘if(𝑆 = 0,
(𝑥 / 𝑑), 𝑘)) / 𝑘) ∈ ℂ) |
66 | 53, 65 | mulcld 10926 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))) → ((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ) |
67 | 49, 66 | fsumcl 15373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) ∈ ℂ) |
68 | 19, 67 | mulcld 10926 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ) |
69 | 2, 68 | fsumcl 15373 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) ∈ ℂ) |
70 | 25, 37 | mulcld 10926 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) ∈ ℂ) |
71 | | 0cn 10898 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
72 | 30 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑇 ∈
ℂ) |
73 | | ifcl 4501 |
. . . . . . . . . 10
⊢ ((0
∈ ℂ ∧ 𝑇
∈ ℂ) → if(𝑆
= 0, 0, 𝑇) ∈
ℂ) |
74 | 71, 72, 73 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ if(𝑆 = 0, 0, 𝑇) ∈
ℂ) |
75 | 19, 67, 74 | subdid 11361 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = ((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))) |
76 | 75 | sumeq2dv 15343 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))) |
77 | 19, 74 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) ∈ ℂ) |
78 | 2, 68, 77 | fsumsub 15428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − (((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)))) |
79 | 20, 24, 37 | mulassd 10929 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) |
80 | | ovif2 7351 |
. . . . . . . . . . . 12
⊢ (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) |
81 | 23 | mul01d 11104 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆 · 0) = 0) |
82 | 81 | ifeq1d 4475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆)))) |
83 | 31, 32, 33 | divcan2d 11683 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇) |
84 | 27, 83 | sylan2br 594 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑆 = 0) → (𝑆 · (𝑇 / 𝑆)) = 𝑇) |
85 | 84 | ifeq2da 4488 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝑆 = 0, 0, (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇)) |
86 | 82, 85 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑆 = 0, (𝑆 · 0), (𝑆 · (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇)) |
87 | 80, 86 | syl5eq 2791 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇)) |
88 | 87 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆))) = if(𝑆 = 0, 0, 𝑇)) |
89 | 88 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (𝑆 · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) |
90 | 71, 30, 73 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑆 = 0, 0, 𝑇) ∈ ℂ) |
91 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑆 = 0, 0, 𝑇) ∈ ℂ) |
92 | 2, 91, 19 | fsummulc1 15425 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) |
93 | 79, 89, 92 | 3eqtrrd 2783 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇)) = ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) |
94 | 93 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) |
95 | 76, 78, 94 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) |
96 | 95 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))))) |
97 | | dchrvmasumif.g |
. . . . . 6
⊢ 𝐾 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) · ((log‘𝑎) / 𝑎))) |
98 | | dchrvmasumif.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) |
99 | | dchrvmasumif.2 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ (3[,)+∞)(abs‘((seq1( + ,
𝐾)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐸 · ((log‘𝑦) / 𝑦))) |
100 | 4, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99 | dchrvmasumiflem1 26554 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · (Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)) − if(𝑆 = 0, 0, 𝑇)))) ∈ 𝑂(1)) |
101 | 96, 100 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))) − ((Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆))))) ∈ 𝑂(1)) |
102 | 69, 70, 101 | o1dif 15267 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+
↦ ((Σ𝑑 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑆) · if(𝑆 = 0, 0, (𝑇 / 𝑆)))) ∈ 𝑂(1))) |
103 | 48, 102 | mpbird 256 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) ∈ 𝑂(1)) |
104 | 7 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑋 ∈ 𝐷) |
105 | | elfzelz 13185 |
. . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℤ) |
106 | 105 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℤ) |
107 | 3, 4, 5, 6, 104, 106 | dchrzrhcl 26298 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
108 | | elfznn 13214 |
. . . . . . . 8
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
109 | 108 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
110 | | vmacl 26172 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
111 | | nndivre 11944 |
. . . . . . . 8
⊢
(((Λ‘𝑛)
∈ ℝ ∧ 𝑛
∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
112 | 110, 111 | mpancom 684 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
((Λ‘𝑛) / 𝑛) ∈
ℝ) |
113 | 109, 112 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℝ) |
114 | 113 | recnd 10934 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((Λ‘𝑛)
/ 𝑛) ∈
ℂ) |
115 | 107, 114 | mulcld 10926 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
116 | 2, 115 | fsumcl 15373 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
117 | | relogcl 25636 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
118 | 117 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
119 | 118 | recnd 10934 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
120 | | ifcl 4501 |
. . . 4
⊢
(((log‘𝑥)
∈ ℂ ∧ 0 ∈ ℂ) → if(𝑆 = 0, (log‘𝑥), 0) ∈ ℂ) |
121 | 119, 71, 120 | sylancl 585 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑆 = 0, (log‘𝑥), 0) ∈
ℂ) |
122 | 116, 121 | addcld 10925 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) ∈ ℂ) |
123 | 122 | abscld 15076 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ) |
124 | 123 | adantrr 713 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ ℝ) |
125 | 38 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑁 ∈
ℕ) |
126 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑋 ∈ 𝐷) |
127 | 40 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑋 ≠ 1 ) |
128 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ+) |
129 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ≤ 𝑥) |
130 | 4, 6, 125, 3, 5, 39, 126, 127, 128, 129 | dchrvmasum2if 26550 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘)))) |
131 | 130 | fveq2d 6760 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) = (abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))) |
132 | 124, 131 | eqled 11008 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ≤ (abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))(((𝑋‘(𝐿‘𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿‘𝑘)) · ((log‘if(𝑆 = 0, (𝑥 / 𝑑), 𝑘)) / 𝑘))))) |
133 | 1, 103, 69, 122, 132 | o1le 15292 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑆 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) |