MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   GIF version

Theorem padicabvcxp 26780
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicabvcxp ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑞,𝑦   𝑦,𝐽   𝐴,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝑃,𝑞,𝑥,𝑦   𝑅,𝑞,𝑦
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝐽(𝑥,𝑞)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicval 26765 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
32adantlr 712 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
43oveq1d 7290 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅))
5 ovif 7372 . . . . 5 (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
6 rpre 12738 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
76adantl 482 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
87recnd 11003 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
9 rpne0 12746 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
109adantl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ≠ 0)
118, 100cxpd 25865 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0↑𝑐𝑅) = 0)
1211adantr 481 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (0↑𝑐𝑅) = 0)
1312ifeq1d 4478 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
145, 13eqtrid 2790 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
15 df-ne 2944 . . . . . 6 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
16 pcqcl 16557 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1716adantlr 712 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1817zcnd 12427 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℂ)
198adantr 481 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑅 ∈ ℂ)
20 mulneg12 11413 . . . . . . . . . . . 12 (((𝑃 pCnt 𝑦) ∈ ℂ ∧ 𝑅 ∈ ℂ) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2118, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2219negcld 11319 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℂ)
2318, 22mulcomd 10996 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃 pCnt 𝑦) · -𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2421, 23eqtrd 2778 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2524oveq2d 7291 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))))
26 prmuz2 16401 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2726adantr 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (ℤ‘2))
28 eluz2b2 12661 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2927, 28sylib 217 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3029simpld 495 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℕ)
3130nnrpd 12770 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ+)
3231adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℝ+)
3317znegcld 12428 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℤ)
3433zred 12426 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℝ)
3532, 34, 19cxpmuld 25891 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅))
367renegcld 11402 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 ∈ ℝ)
3736adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℝ)
3832, 37, 18cxpmuld 25891 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
3925, 35, 383eqtr3d 2786 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
4030nnred 11988 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ)
4140recnd 11003 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℂ)
4241adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℂ)
4330nnne0d 12023 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ≠ 0)
4443adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ≠ 0)
4542, 44, 33cxpexpzd 25866 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-(𝑃 pCnt 𝑦)) = (𝑃↑-(𝑃 pCnt 𝑦)))
4645oveq1d 7290 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
4731, 36rpcxpcld 25887 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ+)
4847adantr 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℝ+)
4948rpcnd 12774 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℂ)
5048rpne0d 12777 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ≠ 0)
5149, 50, 17cxpexpzd 25866 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5239, 46, 513eqtr3d 2786 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5352anassrs 468 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ 𝑦 ≠ 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5415, 53sylan2br 595 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ ¬ 𝑦 = 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5554ifeq2da 4491 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
564, 14, 553eqtrd 2782 . . 3 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
5756mpteq2dva 5174 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))))
58 rpre 12738 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ∈ ℝ)
5947, 58syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ)
60 rpgt0 12742 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → 0 < (𝑃𝑐-𝑅))
6147, 60syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < (𝑃𝑐-𝑅))
62 rpgt0 12742 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 < 𝑅)
6362adantl 482 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < 𝑅)
647lt0neg2d 11545 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0 < 𝑅 ↔ -𝑅 < 0))
6563, 64mpbid 231 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 < 0)
6629simprd 496 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 1 < 𝑃)
67 0red 10978 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 ∈ ℝ)
6840, 66, 36, 67cxpltd 25874 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (-𝑅 < 0 ↔ (𝑃𝑐-𝑅) < (𝑃𝑐0)))
6965, 68mpbid 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < (𝑃𝑐0))
7041cxp0d 25860 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐0) = 1)
7169, 70breqtrd 5100 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < 1)
72 0xr 11022 . . . . 5 0 ∈ ℝ*
73 1xr 11034 . . . . 5 1 ∈ ℝ*
74 elioo2 13120 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1)))
7572, 73, 74mp2an 689 . . . 4 ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1))
7659, 61, 71, 75syl3anbrc 1342 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ (0(,)1))
77 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
78 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
79 eqid 2738 . . . 4 (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
8077, 78, 79padicabv 26778 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃𝑐-𝑅) ∈ (0(,)1)) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8176, 80syldan 591 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8257, 81eqeltrd 2839 1 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008   < clt 11009  -cneg 11206  cn 11973  2c2 12028  cz 12319  cuz 12582  cq 12688  +crp 12730  (,)cioo 13079  cexp 13782  cprime 16376   pCnt cpc 16537  s cress 16941  AbsValcabv 20076  fldccnfld 20597  𝑐ccxp 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-abv 20077  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713
This theorem is referenced by:  ostth3  26786  ostth  26787
  Copyright terms: Public domain W3C validator