MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   GIF version

Theorem padicabvcxp 26202
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicabvcxp ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑞,𝑦   𝑦,𝐽   𝐴,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝑃,𝑞,𝑥,𝑦   𝑅,𝑞,𝑦
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝐽(𝑥,𝑞)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicval 26187 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
32adantlr 713 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
43oveq1d 7165 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅))
5 ovif 7245 . . . . 5 (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
6 rpre 12391 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
76adantl 484 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
87recnd 10663 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
9 rpne0 12399 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
109adantl 484 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ≠ 0)
118, 100cxpd 25287 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0↑𝑐𝑅) = 0)
1211adantr 483 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (0↑𝑐𝑅) = 0)
1312ifeq1d 4484 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
145, 13syl5eq 2868 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
15 df-ne 3017 . . . . . 6 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
16 pcqcl 16187 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1716adantlr 713 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1817zcnd 12082 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℂ)
198adantr 483 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑅 ∈ ℂ)
20 mulneg12 11072 . . . . . . . . . . . 12 (((𝑃 pCnt 𝑦) ∈ ℂ ∧ 𝑅 ∈ ℂ) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2118, 19, 20syl2anc 586 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2219negcld 10978 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℂ)
2318, 22mulcomd 10656 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃 pCnt 𝑦) · -𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2421, 23eqtrd 2856 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2524oveq2d 7166 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))))
26 prmuz2 16034 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2726adantr 483 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (ℤ‘2))
28 eluz2b2 12315 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2927, 28sylib 220 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3029simpld 497 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℕ)
3130nnrpd 12423 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ+)
3231adantr 483 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℝ+)
3317znegcld 12083 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℤ)
3433zred 12081 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℝ)
3532, 34, 19cxpmuld 25313 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅))
367renegcld 11061 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 ∈ ℝ)
3736adantr 483 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℝ)
3832, 37, 18cxpmuld 25313 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
3925, 35, 383eqtr3d 2864 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
4030nnred 11647 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ)
4140recnd 10663 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℂ)
4241adantr 483 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℂ)
4330nnne0d 11681 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ≠ 0)
4443adantr 483 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ≠ 0)
4542, 44, 33cxpexpzd 25288 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-(𝑃 pCnt 𝑦)) = (𝑃↑-(𝑃 pCnt 𝑦)))
4645oveq1d 7165 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
4731, 36rpcxpcld 25309 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ+)
4847adantr 483 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℝ+)
4948rpcnd 12427 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℂ)
5048rpne0d 12430 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ≠ 0)
5149, 50, 17cxpexpzd 25288 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5239, 46, 513eqtr3d 2864 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5352anassrs 470 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ 𝑦 ≠ 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5415, 53sylan2br 596 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ ¬ 𝑦 = 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5554ifeq2da 4497 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
564, 14, 553eqtrd 2860 . . 3 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
5756mpteq2dva 5153 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))))
58 rpre 12391 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ∈ ℝ)
5947, 58syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ)
60 rpgt0 12395 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → 0 < (𝑃𝑐-𝑅))
6147, 60syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < (𝑃𝑐-𝑅))
62 rpgt0 12395 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 < 𝑅)
6362adantl 484 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < 𝑅)
647lt0neg2d 11204 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0 < 𝑅 ↔ -𝑅 < 0))
6563, 64mpbid 234 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 < 0)
6629simprd 498 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 1 < 𝑃)
67 0red 10638 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 ∈ ℝ)
6840, 66, 36, 67cxpltd 25296 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (-𝑅 < 0 ↔ (𝑃𝑐-𝑅) < (𝑃𝑐0)))
6965, 68mpbid 234 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < (𝑃𝑐0))
7041cxp0d 25282 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐0) = 1)
7169, 70breqtrd 5084 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < 1)
72 0xr 10682 . . . . 5 0 ∈ ℝ*
73 1xr 10694 . . . . 5 1 ∈ ℝ*
74 elioo2 12773 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1)))
7572, 73, 74mp2an 690 . . . 4 ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1))
7659, 61, 71, 75syl3anbrc 1339 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ (0(,)1))
77 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
78 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
79 eqid 2821 . . . 4 (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
8077, 78, 79padicabv 26200 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃𝑐-𝑅) ∈ (0(,)1)) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8176, 80syldan 593 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8257, 81eqeltrd 2913 1 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  ifcif 4466   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  *cxr 10668   < clt 10669  -cneg 10865  cn 11632  2c2 11686  cz 11975  cuz 12237  cq 12342  +crp 12383  (,)cioo 12732  cexp 13423  cprime 16009   pCnt cpc 16167  s cress 16478  AbsValcabv 19581  fldccnfld 20539  𝑐ccxp 25133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-dvds 15602  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-mulg 18219  df-subg 18270  df-cntz 18441  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-subrg 19527  df-abv 19582  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-cxp 25135
This theorem is referenced by:  ostth3  26208  ostth  26209
  Copyright terms: Public domain W3C validator