MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   GIF version

Theorem padicabvcxp 26513
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicabvcxp ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑞,𝑦   𝑦,𝐽   𝐴,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝑃,𝑞,𝑥,𝑦   𝑅,𝑞,𝑦
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝐽(𝑥,𝑞)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicval 26498 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
32adantlr 715 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
43oveq1d 7228 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅))
5 ovif 7308 . . . . 5 (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
6 rpre 12594 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
76adantl 485 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
87recnd 10861 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
9 rpne0 12602 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
109adantl 485 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ≠ 0)
118, 100cxpd 25598 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0↑𝑐𝑅) = 0)
1211adantr 484 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (0↑𝑐𝑅) = 0)
1312ifeq1d 4458 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
145, 13syl5eq 2790 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
15 df-ne 2941 . . . . . 6 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
16 pcqcl 16409 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1716adantlr 715 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1817zcnd 12283 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℂ)
198adantr 484 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑅 ∈ ℂ)
20 mulneg12 11270 . . . . . . . . . . . 12 (((𝑃 pCnt 𝑦) ∈ ℂ ∧ 𝑅 ∈ ℂ) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2118, 19, 20syl2anc 587 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2219negcld 11176 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℂ)
2318, 22mulcomd 10854 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃 pCnt 𝑦) · -𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2421, 23eqtrd 2777 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2524oveq2d 7229 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))))
26 prmuz2 16253 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2726adantr 484 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (ℤ‘2))
28 eluz2b2 12517 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2927, 28sylib 221 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3029simpld 498 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℕ)
3130nnrpd 12626 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ+)
3231adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℝ+)
3317znegcld 12284 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℤ)
3433zred 12282 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℝ)
3532, 34, 19cxpmuld 25624 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅))
367renegcld 11259 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 ∈ ℝ)
3736adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℝ)
3832, 37, 18cxpmuld 25624 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
3925, 35, 383eqtr3d 2785 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
4030nnred 11845 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ)
4140recnd 10861 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℂ)
4241adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℂ)
4330nnne0d 11880 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ≠ 0)
4443adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ≠ 0)
4542, 44, 33cxpexpzd 25599 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-(𝑃 pCnt 𝑦)) = (𝑃↑-(𝑃 pCnt 𝑦)))
4645oveq1d 7228 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
4731, 36rpcxpcld 25620 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ+)
4847adantr 484 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℝ+)
4948rpcnd 12630 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℂ)
5048rpne0d 12633 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ≠ 0)
5149, 50, 17cxpexpzd 25599 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5239, 46, 513eqtr3d 2785 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5352anassrs 471 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ 𝑦 ≠ 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5415, 53sylan2br 598 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ ¬ 𝑦 = 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5554ifeq2da 4471 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
564, 14, 553eqtrd 2781 . . 3 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
5756mpteq2dva 5150 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))))
58 rpre 12594 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ∈ ℝ)
5947, 58syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ)
60 rpgt0 12598 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → 0 < (𝑃𝑐-𝑅))
6147, 60syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < (𝑃𝑐-𝑅))
62 rpgt0 12598 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 < 𝑅)
6362adantl 485 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < 𝑅)
647lt0neg2d 11402 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0 < 𝑅 ↔ -𝑅 < 0))
6563, 64mpbid 235 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 < 0)
6629simprd 499 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 1 < 𝑃)
67 0red 10836 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 ∈ ℝ)
6840, 66, 36, 67cxpltd 25607 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (-𝑅 < 0 ↔ (𝑃𝑐-𝑅) < (𝑃𝑐0)))
6965, 68mpbid 235 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < (𝑃𝑐0))
7041cxp0d 25593 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐0) = 1)
7169, 70breqtrd 5079 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < 1)
72 0xr 10880 . . . . 5 0 ∈ ℝ*
73 1xr 10892 . . . . 5 1 ∈ ℝ*
74 elioo2 12976 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1)))
7572, 73, 74mp2an 692 . . . 4 ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1))
7659, 61, 71, 75syl3anbrc 1345 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ (0(,)1))
77 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
78 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
79 eqid 2737 . . . 4 (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
8077, 78, 79padicabv 26511 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃𝑐-𝑅) ∈ (0(,)1)) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8176, 80syldan 594 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8257, 81eqeltrd 2838 1 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  ifcif 4439   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734  *cxr 10866   < clt 10867  -cneg 11063  cn 11830  2c2 11885  cz 12176  cuz 12438  cq 12544  +crp 12586  (,)cioo 12935  cexp 13635  cprime 16228   pCnt cpc 16389  s cress 16784  AbsValcabv 19852  fldccnfld 20363  𝑐ccxp 25444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-mulg 18489  df-subg 18540  df-cntz 18711  df-cmn 19172  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-subrg 19798  df-abv 19853  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445  df-cxp 25446
This theorem is referenced by:  ostth3  26519  ostth  26520
  Copyright terms: Public domain W3C validator