MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvcxp Structured version   Visualization version   GIF version

Theorem padicabvcxp 27541
Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicabvcxp ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑞,𝑦   𝑦,𝐽   𝐴,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝑃,𝑞,𝑥,𝑦   𝑅,𝑞,𝑦
Allowed substitution hints:   𝑄(𝑞)   𝑅(𝑥)   𝐽(𝑥,𝑞)

Proof of Theorem padicabvcxp
StepHypRef Expression
1 padic.j . . . . . . 7 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
21padicval 27526 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
32adantlr 715 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → ((𝐽𝑃)‘𝑦) = if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦))))
43oveq1d 7364 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅))
5 ovif 7447 . . . . 5 (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
6 rpre 12902 . . . . . . . . . 10 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
76adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
87recnd 11143 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
9 rpne0 12910 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
109adantl 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑅 ≠ 0)
118, 100cxpd 26617 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0↑𝑐𝑅) = 0)
1211adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (0↑𝑐𝑅) = 0)
1312ifeq1d 4496 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, (0↑𝑐𝑅), ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
145, 13eqtrid 2776 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (if(𝑦 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑦)))↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)))
15 df-ne 2926 . . . . . 6 (𝑦 ≠ 0 ↔ ¬ 𝑦 = 0)
16 pcqcl 16768 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1716adantlr 715 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
1817zcnd 12581 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℂ)
198adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑅 ∈ ℂ)
20 mulneg12 11558 . . . . . . . . . . . 12 (((𝑃 pCnt 𝑦) ∈ ℂ ∧ 𝑅 ∈ ℂ) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2118, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = ((𝑃 pCnt 𝑦) · -𝑅))
2219negcld 11462 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℂ)
2318, 22mulcomd 11136 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃 pCnt 𝑦) · -𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2421, 23eqtrd 2764 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (-(𝑃 pCnt 𝑦) · 𝑅) = (-𝑅 · (𝑃 pCnt 𝑦)))
2524oveq2d 7365 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))))
26 prmuz2 16607 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2726adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ (ℤ‘2))
28 eluz2b2 12822 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
2927, 28sylib 218 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
3029simpld 494 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℕ)
3130nnrpd 12935 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ+)
3231adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℝ+)
3317znegcld 12582 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℤ)
3433zred 12580 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -(𝑃 pCnt 𝑦) ∈ ℝ)
3532, 34, 19cxpmuld 26644 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-(𝑃 pCnt 𝑦) · 𝑅)) = ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅))
367renegcld 11547 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 ∈ ℝ)
3736adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → -𝑅 ∈ ℝ)
3832, 37, 18cxpmuld 26644 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐(-𝑅 · (𝑃 pCnt 𝑦))) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
3925, 35, 383eqtr3d 2772 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)))
4030nnred 12143 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℝ)
4140recnd 11143 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ∈ ℂ)
4241adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ∈ ℂ)
4330nnne0d 12178 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 𝑃 ≠ 0)
4443adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → 𝑃 ≠ 0)
4542, 44, 33cxpexpzd 26618 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-(𝑃 pCnt 𝑦)) = (𝑃↑-(𝑃 pCnt 𝑦)))
4645oveq1d 7364 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅))
4731, 36rpcxpcld 26640 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ+)
4847adantr 480 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℝ+)
4948rpcnd 12939 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ∈ ℂ)
5048rpne0d 12942 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃𝑐-𝑅) ≠ 0)
5149, 50, 17cxpexpzd 26618 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃𝑐-𝑅)↑𝑐(𝑃 pCnt 𝑦)) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5239, 46, 513eqtr3d 2772 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5352anassrs 467 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ 𝑦 ≠ 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5415, 53sylan2br 595 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) ∧ ¬ 𝑦 = 0) → ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅) = ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))
5554ifeq2da 4509 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → if(𝑦 = 0, 0, ((𝑃↑-(𝑃 pCnt 𝑦))↑𝑐𝑅)) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
564, 14, 553eqtrd 2768 . . 3 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ ℚ) → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
5756mpteq2dva 5185 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))))
58 rpre 12902 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → (𝑃𝑐-𝑅) ∈ ℝ)
5947, 58syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ ℝ)
60 rpgt0 12906 . . . . 5 ((𝑃𝑐-𝑅) ∈ ℝ+ → 0 < (𝑃𝑐-𝑅))
6147, 60syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < (𝑃𝑐-𝑅))
62 rpgt0 12906 . . . . . . . 8 (𝑅 ∈ ℝ+ → 0 < 𝑅)
6362adantl 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 < 𝑅)
647lt0neg2d 11690 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (0 < 𝑅 ↔ -𝑅 < 0))
6563, 64mpbid 232 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → -𝑅 < 0)
6629simprd 495 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 1 < 𝑃)
67 0red 11118 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → 0 ∈ ℝ)
6840, 66, 36, 67cxpltd 26626 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (-𝑅 < 0 ↔ (𝑃𝑐-𝑅) < (𝑃𝑐0)))
6965, 68mpbid 232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < (𝑃𝑐0))
7041cxp0d 26612 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐0) = 1)
7169, 70breqtrd 5118 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) < 1)
72 0xr 11162 . . . . 5 0 ∈ ℝ*
73 1xr 11174 . . . . 5 1 ∈ ℝ*
74 elioo2 13289 . . . . 5 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1)))
7572, 73, 74mp2an 692 . . . 4 ((𝑃𝑐-𝑅) ∈ (0(,)1) ↔ ((𝑃𝑐-𝑅) ∈ ℝ ∧ 0 < (𝑃𝑐-𝑅) ∧ (𝑃𝑐-𝑅) < 1))
7659, 61, 71, 75syl3anbrc 1344 . . 3 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑃𝑐-𝑅) ∈ (0(,)1))
77 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
78 qabsabv.a . . . 4 𝐴 = (AbsVal‘𝑄)
79 eqid 2729 . . . 4 (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) = (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦))))
8077, 78, 79padicabv 27539 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃𝑐-𝑅) ∈ (0(,)1)) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8176, 80syldan 591 . 2 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ if(𝑦 = 0, 0, ((𝑃𝑐-𝑅)↑(𝑃 pCnt 𝑦)))) ∈ 𝐴)
8257, 81eqeltrd 2828 1 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ifcif 4476   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  *cxr 11148   < clt 11149  -cneg 11348  cn 12128  2c2 12183  cz 12471  cuz 12735  cq 12849  +crp 12893  (,)cioo 13248  cexp 13968  cprime 16582   pCnt cpc 16748  s cress 17141  AbsValcabv 20693  fldccnfld 21261  𝑐ccxp 26462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-abv 20694  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464
This theorem is referenced by:  ostth3  27547  ostth  27548
  Copyright terms: Public domain W3C validator