Step | Hyp | Ref
| Expression |
1 | | limcrcl 24943 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) → ((𝐹 ↾ 𝐶):dom (𝐹 ↾ 𝐶)⟶ℂ ∧ dom (𝐹 ↾ 𝐶) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
2 | 1 | simp3d 1142 |
. . . . 5
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) → 𝐵 ∈ ℂ) |
3 | | limccl 24944 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐶) limℂ 𝐵) ⊆ ℂ |
4 | 3 | sseli 3913 |
. . . . 5
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) → 𝑥 ∈ ℂ) |
5 | 2, 4 | jca 511 |
. . . 4
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) |
6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))) |
7 | | limcrcl 24943 |
. . . . . 6
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
8 | 7 | simp3d 1142 |
. . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝐵 ∈ ℂ) |
9 | | limccl 24944 |
. . . . . 6
⊢ (𝐹 limℂ 𝐵) ⊆
ℂ |
10 | 9 | sseli 3913 |
. . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ℂ) |
11 | 8, 10 | jca 511 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) |
12 | 11 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))) |
13 | | limcres.j |
. . . . . . . 8
⊢ 𝐽 = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
14 | | limcres.k |
. . . . . . . . . 10
⊢ 𝐾 =
(TopOpen‘ℂfld) |
15 | 14 | cnfldtopon 23852 |
. . . . . . . . 9
⊢ 𝐾 ∈
(TopOn‘ℂ) |
16 | | limcres.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐴 ⊆ ℂ) |
18 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ℂ) |
19 | 18 | snssd 4739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → {𝐵} ⊆ ℂ) |
20 | 17, 19 | unssd 4116 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
21 | | resttopon 22220 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) →
(𝐾 ↾t
(𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
22 | 15, 20, 21 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
23 | 13, 22 | eqeltrid 2843 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
24 | | topontop 21970 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → 𝐽 ∈ Top) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ Top) |
26 | | limcres.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶 ⊆ 𝐴) |
28 | | unss1 4109 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐴 → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵})) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵})) |
30 | | toponuni 21971 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = ∪ 𝐽) |
31 | 23, 30 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) = ∪ 𝐽) |
32 | 29, 31 | sseqtrd 3957 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ ∪
𝐽) |
33 | | limcres.i |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵}))) |
34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵}))) |
35 | | elun 4079 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵})) |
36 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ ℂ) |
37 | | limcres.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
38 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐹:𝐴⟶ℂ) |
39 | 38 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
40 | 36, 39 | ifcld 4502 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ 𝐴) → if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)) ∈ ℂ) |
41 | | elsni 4575 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) |
42 | 41 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑧 = 𝐵) |
43 | 42 | iftrued 4464 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)) = 𝑥) |
44 | | simplrr 774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑥 ∈ ℂ) |
45 | 43, 44 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)) ∈ ℂ) |
46 | 40, 45 | jaodan 954 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ (𝑧 ∈ 𝐴 ∨ 𝑧 ∈ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)) ∈ ℂ) |
47 | 35, 46 | sylan2b 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)) ∈ ℂ) |
48 | 47 | fmpttd 6971 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))):(𝐴 ∪ {𝐵})⟶ℂ) |
49 | 31 | feq2d 6570 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))):∪ 𝐽⟶ℂ)) |
50 | 48, 49 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))):∪ 𝐽⟶ℂ) |
51 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
52 | 15 | toponunii 21973 |
. . . . . . 7
⊢ ℂ =
∪ 𝐾 |
53 | 51, 52 | cnprest 22348 |
. . . . . 6
⊢ (((𝐽 ∈ Top ∧ (𝐶 ∪ {𝐵}) ⊆ ∪
𝐽) ∧ (𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))):∪ 𝐽⟶ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
54 | 25, 32, 34, 50, 53 | syl22anc 835 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
55 | | eqid 2738 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
56 | 13, 14, 55, 38, 17, 18 | ellimc 24942 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
57 | | eqid 2738 |
. . . . . . 7
⊢ (𝐾 ↾t (𝐶 ∪ {𝐵})) = (𝐾 ↾t (𝐶 ∪ {𝐵})) |
58 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) |
59 | 38, 27 | fssresd 6625 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐹 ↾ 𝐶):𝐶⟶ℂ) |
60 | 27, 17 | sstrd 3927 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶 ⊆ ℂ) |
61 | 57, 14, 58, 59, 60, 18 | ellimc 24942 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) ∈ (((𝐾 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
62 | | elun 4079 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐶 ∨ 𝑧 ∈ {𝐵})) |
63 | | velsn 4574 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵) |
64 | 63 | orbi2i 909 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐶 ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵)) |
65 | 62, 64 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵)) |
66 | | pm5.61 997 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵)) |
67 | | fvres 6775 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑧) = (𝐹‘𝑧)) |
68 | 67 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ 𝐶)‘𝑧) = (𝐹‘𝑧)) |
69 | 66, 68 | sylbi 216 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ 𝐶)‘𝑧) = (𝐹‘𝑧)) |
70 | 69 | ifeq2da 4488 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
71 | 65, 70 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝐶 ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
72 | 71 | mpteq2ia 5173 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
73 | 29 | resmptd 5937 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵})) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧)))) |
74 | 72, 73 | eqtr4id 2798 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵}))) |
75 | 13 | oveq1i 7265 |
. . . . . . . . . 10
⊢ (𝐽 ↾t (𝐶 ∪ {𝐵})) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) |
76 | | cnex 10883 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
77 | 76 | ssex 5240 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V) |
78 | 20, 77 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ∈ V) |
79 | | restabs 22224 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}) ∧ (𝐴 ∪ {𝐵}) ∈ V) → ((𝐾 ↾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾 ↾t (𝐶 ∪ {𝐵}))) |
80 | 15, 29, 78, 79 | mp3an2i 1464 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾 ↾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾 ↾t (𝐶 ∪ {𝐵}))) |
81 | 75, 80 | eqtr2id 2792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾 ↾t (𝐶 ∪ {𝐵})) = (𝐽 ↾t (𝐶 ∪ {𝐵}))) |
82 | 81 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾) = ((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)) |
83 | 82 | fveq1d 6758 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (((𝐾 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) = (((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
84 | 74, 83 | eleq12d 2833 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ 𝐶)‘𝑧))) ∈ (((𝐾 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
85 | 61, 84 | bitrd 278 |
. . . . 5
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽 ↾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
86 | 54, 56, 85 | 3bitr4rd 311 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ 𝑥 ∈ (𝐹 limℂ 𝐵))) |
87 | 86 | ex 412 |
. . 3
⊢ (𝜑 → ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ 𝑥 ∈ (𝐹 limℂ 𝐵)))) |
88 | 6, 12, 87 | pm5.21ndd 380 |
. 2
⊢ (𝜑 → (𝑥 ∈ ((𝐹 ↾ 𝐶) limℂ 𝐵) ↔ 𝑥 ∈ (𝐹 limℂ 𝐵))) |
89 | 88 | eqrdv 2736 |
1
⊢ (𝜑 → ((𝐹 ↾ 𝐶) limℂ 𝐵) = (𝐹 limℂ 𝐵)) |