MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcres Structured version   Visualization version   GIF version

Theorem limcres 25763
Description: If 𝐵 is an interior point of 𝐶 ∪ {𝐵} relative to the domain 𝐴, then a limit point of 𝐹𝐶 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.)
Hypotheses
Ref Expression
limcres.f (𝜑𝐹:𝐴⟶ℂ)
limcres.c (𝜑𝐶𝐴)
limcres.a (𝜑𝐴 ⊆ ℂ)
limcres.k 𝐾 = (TopOpen‘ℂfld)
limcres.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcres.i (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
Assertion
Ref Expression
limcres (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcres
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25751 . . . . . 6 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → ((𝐹𝐶):dom (𝐹𝐶)⟶ℂ ∧ dom (𝐹𝐶) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp3d 1144 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝐵 ∈ ℂ)
3 limccl 25752 . . . . . 6 ((𝐹𝐶) lim 𝐵) ⊆ ℂ
43sseli 3939 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝑥 ∈ ℂ)
52, 4jca 511 . . . 4 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
65a1i 11 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
7 limcrcl 25751 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
87simp3d 1144 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
9 limccl 25752 . . . . . 6 (𝐹 lim 𝐵) ⊆ ℂ
109sseli 3939 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ℂ)
118, 10jca 511 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
1211a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
13 limcres.j . . . . . . . 8 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
14 limcres.k . . . . . . . . . 10 𝐾 = (TopOpen‘ℂfld)
1514cnfldtopon 24646 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
16 limcres.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐴 ⊆ ℂ)
18 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ℂ)
1918snssd 4769 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → {𝐵} ⊆ ℂ)
2017, 19unssd 4151 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
21 resttopon 23024 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2215, 20, 21sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2313, 22eqeltrid 2832 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})))
24 topontop 22776 . . . . . . 7 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → 𝐽 ∈ Top)
2523, 24syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ Top)
26 limcres.c . . . . . . . . 9 (𝜑𝐶𝐴)
2726adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶𝐴)
28 unss1 4144 . . . . . . . 8 (𝐶𝐴 → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
2927, 28syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
30 toponuni 22777 . . . . . . . 8 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = 𝐽)
3123, 30syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) = 𝐽)
3229, 31sseqtrd 3980 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ 𝐽)
33 limcres.i . . . . . . 7 (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
35 elun 4112 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
36 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → 𝑥 ∈ ℂ)
37 limcres.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
3938ffvelcdmda 7038 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
4036, 39ifcld 4531 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
41 elsni 4602 . . . . . . . . . . . . 13 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
4241adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑧 = 𝐵)
4342iftrued 4492 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) = 𝑥)
44 simplrr 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑥 ∈ ℂ)
4543, 44eqeltrd 2828 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4640, 45jaodan 959 . . . . . . . . 9 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ (𝑧𝐴𝑧 ∈ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4735, 46sylan2b 594 . . . . . . . 8 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4847fmpttd 7069 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
4931feq2d 6654 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ))
5048, 49mpbid 232 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)
51 eqid 2729 . . . . . . 7 𝐽 = 𝐽
5215toponunii 22779 . . . . . . 7 ℂ = 𝐾
5351, 52cnprest 23152 . . . . . 6 (((𝐽 ∈ Top ∧ (𝐶 ∪ {𝐵}) ⊆ 𝐽) ∧ (𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
5425, 32, 34, 50, 53syl22anc 838 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
55 eqid 2729 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
5613, 14, 55, 38, 17, 18ellimc 25750 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
57 eqid 2729 . . . . . . 7 (𝐾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵}))
58 eqid 2729 . . . . . . 7 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)))
5938, 27fssresd 6709 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐹𝐶):𝐶⟶ℂ)
6027, 17sstrd 3954 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶 ⊆ ℂ)
6157, 14, 58, 59, 60, 18ellimc 25750 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
62 elun 4112 . . . . . . . . . . 11 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 ∈ {𝐵}))
63 velsn 4601 . . . . . . . . . . . 12 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
6463orbi2i 912 . . . . . . . . . . 11 ((𝑧𝐶𝑧 ∈ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
6562, 64bitri 275 . . . . . . . . . 10 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
66 pm5.61 1002 . . . . . . . . . . . 12 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐶 ∧ ¬ 𝑧 = 𝐵))
67 fvres 6859 . . . . . . . . . . . . 13 (𝑧𝐶 → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
6867adantr 480 . . . . . . . . . . . 12 ((𝑧𝐶 ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
6966, 68sylbi 217 . . . . . . . . . . 11 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
7069ifeq2da 4517 . . . . . . . . . 10 ((𝑧𝐶𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7165, 70sylbi 217 . . . . . . . . 9 (𝑧 ∈ (𝐶 ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7271mpteq2ia 5197 . . . . . . . 8 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7329resmptd 6000 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))))
7472, 73eqtr4id 2783 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})))
7513oveq1i 7379 . . . . . . . . . 10 (𝐽t (𝐶 ∪ {𝐵})) = ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵}))
76 cnex 11125 . . . . . . . . . . . . 13 ℂ ∈ V
7776ssex 5271 . . . . . . . . . . . 12 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
7820, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ∈ V)
79 restabs 23028 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}) ∧ (𝐴 ∪ {𝐵}) ∈ V) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8015, 29, 78, 79mp3an2i 1468 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8175, 80eqtr2id 2777 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐶 ∪ {𝐵})) = (𝐽t (𝐶 ∪ {𝐵})))
8281oveq1d 7384 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾) = ((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾))
8382fveq1d 6842 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) = (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))
8474, 83eleq12d 2822 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8561, 84bitrd 279 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8654, 56, 853bitr4rd 312 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
8786ex 412 . . 3 (𝜑 → ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵))))
886, 12, 87pm5.21ndd 379 . 2 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
8988eqrdv 2727 1 (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  ifcif 4484  {csn 4585   cuni 4867  cmpt 5183  dom cdm 5631  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  t crest 17359  TopOpenctopn 17360  fldccnfld 21240  Topctop 22756  TopOnctopon 22773  intcnt 22880   CnP ccnp 23088   lim climc 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-ntr 22883  df-cnp 23091  df-xms 24184  df-ms 24185  df-limc 25743
This theorem is referenced by:  dvreslem  25786  dvaddbr  25816  dvmulbr  25817  dvmulbrOLD  25818  lhop2  25896  lhop  25897  limciccioolb  45592  limcicciooub  45608  limcresiooub  45613  limcresioolb  45614  ioccncflimc  45856  icocncflimc  45860  dirkercncflem3  46076  fourierdlem32  46110  fourierdlem33  46111  fourierdlem48  46125  fourierdlem49  46126  fourierdlem62  46139  fouriersw  46202
  Copyright terms: Public domain W3C validator