MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcres Structured version   Visualization version   GIF version

Theorem limcres 25909
Description: If 𝐵 is an interior point of 𝐶 ∪ {𝐵} relative to the domain 𝐴, then a limit point of 𝐹𝐶 extends to a limit of 𝐹. (Contributed by Mario Carneiro, 27-Dec-2016.)
Hypotheses
Ref Expression
limcres.f (𝜑𝐹:𝐴⟶ℂ)
limcres.c (𝜑𝐶𝐴)
limcres.a (𝜑𝐴 ⊆ ℂ)
limcres.k 𝐾 = (TopOpen‘ℂfld)
limcres.j 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
limcres.i (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
Assertion
Ref Expression
limcres (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcres
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25897 . . . . . 6 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → ((𝐹𝐶):dom (𝐹𝐶)⟶ℂ ∧ dom (𝐹𝐶) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp3d 1141 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝐵 ∈ ℂ)
3 limccl 25898 . . . . . 6 ((𝐹𝐶) lim 𝐵) ⊆ ℂ
43sseli 3975 . . . . 5 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → 𝑥 ∈ ℂ)
52, 4jca 510 . . . 4 (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
65a1i 11 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
7 limcrcl 25897 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
87simp3d 1141 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
9 limccl 25898 . . . . . 6 (𝐹 lim 𝐵) ⊆ ℂ
109sseli 3975 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ℂ)
118, 10jca 510 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ))
1211a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)))
13 limcres.j . . . . . . . 8 𝐽 = (𝐾t (𝐴 ∪ {𝐵}))
14 limcres.k . . . . . . . . . 10 𝐾 = (TopOpen‘ℂfld)
1514cnfldtopon 24793 . . . . . . . . 9 𝐾 ∈ (TopOn‘ℂ)
16 limcres.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℂ)
1716adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐴 ⊆ ℂ)
18 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ℂ)
1918snssd 4818 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → {𝐵} ⊆ ℂ)
2017, 19unssd 4187 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
21 resttopon 23159 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2215, 20, 21sylancr 585 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
2313, 22eqeltrid 2830 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})))
24 topontop 22909 . . . . . . 7 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → 𝐽 ∈ Top)
2523, 24syl 17 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐽 ∈ Top)
26 limcres.c . . . . . . . . 9 (𝜑𝐶𝐴)
2726adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶𝐴)
28 unss1 4180 . . . . . . . 8 (𝐶𝐴 → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
2927, 28syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}))
30 toponuni 22910 . . . . . . . 8 (𝐽 ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = 𝐽)
3123, 30syl 17 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) = 𝐽)
3229, 31sseqtrd 4020 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐶 ∪ {𝐵}) ⊆ 𝐽)
33 limcres.i . . . . . . 7 (𝜑𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
3433adantr 479 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})))
35 elun 4148 . . . . . . . . 9 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑧𝐴𝑧 ∈ {𝐵}))
36 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → 𝑥 ∈ ℂ)
37 limcres.f . . . . . . . . . . . . 13 (𝜑𝐹:𝐴⟶ℂ)
3837adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
3938ffvelcdmda 7100 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
4036, 39ifcld 4579 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧𝐴) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
41 elsni 4650 . . . . . . . . . . . . 13 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
4241adantl 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑧 = 𝐵)
4342iftrued 4541 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) = 𝑥)
44 simplrr 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → 𝑥 ∈ ℂ)
4543, 44eqeltrd 2826 . . . . . . . . . 10 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4640, 45jaodan 955 . . . . . . . . 9 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ (𝑧𝐴𝑧 ∈ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4735, 46sylan2b 592 . . . . . . . 8 (((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) ∧ 𝑧 ∈ (𝐴 ∪ {𝐵})) → if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)) ∈ ℂ)
4847fmpttd 7131 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ)
4931feq2d 6716 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))):(𝐴 ∪ {𝐵})⟶ℂ ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ))
5048, 49mpbid 231 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)
51 eqid 2726 . . . . . . 7 𝐽 = 𝐽
5215toponunii 22912 . . . . . . 7 ℂ = 𝐾
5351, 52cnprest 23287 . . . . . 6 (((𝐽 ∈ Top ∧ (𝐶 ∪ {𝐵}) ⊆ 𝐽) ∧ (𝐵 ∈ ((int‘𝐽)‘(𝐶 ∪ {𝐵})) ∧ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))): 𝐽⟶ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
5425, 32, 34, 50, 53syl22anc 837 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
55 eqid 2726 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
5613, 14, 55, 38, 17, 18ellimc 25896 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
57 eqid 2726 . . . . . . 7 (𝐾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵}))
58 eqid 2726 . . . . . . 7 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)))
5938, 27fssresd 6771 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐹𝐶):𝐶⟶ℂ)
6027, 17sstrd 3990 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝐶 ⊆ ℂ)
6157, 14, 58, 59, 60, 18ellimc 25896 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
62 elun 4148 . . . . . . . . . . 11 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 ∈ {𝐵}))
63 velsn 4649 . . . . . . . . . . . 12 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
6463orbi2i 910 . . . . . . . . . . 11 ((𝑧𝐶𝑧 ∈ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
6562, 64bitri 274 . . . . . . . . . 10 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↔ (𝑧𝐶𝑧 = 𝐵))
66 pm5.61 998 . . . . . . . . . . . 12 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧𝐶 ∧ ¬ 𝑧 = 𝐵))
67 fvres 6922 . . . . . . . . . . . . 13 (𝑧𝐶 → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
6867adantr 479 . . . . . . . . . . . 12 ((𝑧𝐶 ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
6966, 68sylbi 216 . . . . . . . . . . 11 (((𝑧𝐶𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
7069ifeq2da 4565 . . . . . . . . . 10 ((𝑧𝐶𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7165, 70sylbi 216 . . . . . . . . 9 (𝑧 ∈ (𝐶 ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7271mpteq2ia 5258 . . . . . . . 8 (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
7329resmptd 6051 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) = (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))))
7472, 73eqtr4id 2785 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) = ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})))
7513oveq1i 7436 . . . . . . . . . 10 (𝐽t (𝐶 ∪ {𝐵})) = ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵}))
76 cnex 11241 . . . . . . . . . . . . 13 ℂ ∈ V
7776ssex 5328 . . . . . . . . . . . 12 ((𝐴 ∪ {𝐵}) ⊆ ℂ → (𝐴 ∪ {𝐵}) ∈ V)
7820, 77syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐴 ∪ {𝐵}) ∈ V)
79 restabs 23163 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐶 ∪ {𝐵}) ⊆ (𝐴 ∪ {𝐵}) ∧ (𝐴 ∪ {𝐵}) ∈ V) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8015, 29, 78, 79mp3an2i 1463 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐴 ∪ {𝐵})) ↾t (𝐶 ∪ {𝐵})) = (𝐾t (𝐶 ∪ {𝐵})))
8175, 80eqtr2id 2779 . . . . . . . . 9 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝐾t (𝐶 ∪ {𝐵})) = (𝐽t (𝐶 ∪ {𝐵})))
8281oveq1d 7441 . . . . . . . 8 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾) = ((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾))
8382fveq1d 6905 . . . . . . 7 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) = (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵))
8474, 83eleq12d 2820 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑧 ∈ (𝐶 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹𝐶)‘𝑧))) ∈ (((𝐾t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8561, 84bitrd 278 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ ((𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ↾ (𝐶 ∪ {𝐵})) ∈ (((𝐽t (𝐶 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8654, 56, 853bitr4rd 311 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
8786ex 411 . . 3 (𝜑 → ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵))))
886, 12, 87pm5.21ndd 378 . 2 (𝜑 → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ 𝑥 ∈ (𝐹 lim 𝐵)))
8988eqrdv 2724 1 (𝜑 → ((𝐹𝐶) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  Vcvv 3462  cun 3945  wss 3947  ifcif 4533  {csn 4633   cuni 4915  cmpt 5238  dom cdm 5684  cres 5686  wf 6552  cfv 6556  (class class class)co 7426  cc 11158  t crest 17437  TopOpenctopn 17438  fldccnfld 21345  Topctop 22889  TopOnctopon 22906  intcnt 23015   CnP ccnp 23223   lim climc 25885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-pm 8860  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fi 9456  df-sup 9487  df-inf 9488  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-q 12987  df-rp 13031  df-xneg 13148  df-xadd 13149  df-xmul 13150  df-fz 13541  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-mulr 17282  df-starv 17283  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-rest 17439  df-topn 17440  df-topgen 17460  df-psmet 21337  df-xmet 21338  df-met 21339  df-bl 21340  df-mopn 21341  df-cnfld 21346  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-ntr 23018  df-cnp 23226  df-xms 24320  df-ms 24321  df-limc 25889
This theorem is referenced by:  dvreslem  25932  dvaddbr  25962  dvmulbr  25963  dvmulbrOLD  25964  lhop2  26042  lhop  26043  limciccioolb  45260  limcicciooub  45276  limcresiooub  45281  limcresioolb  45282  ioccncflimc  45524  icocncflimc  45528  dirkercncflem3  45744  fourierdlem32  45778  fourierdlem33  45779  fourierdlem48  45793  fourierdlem49  45794  fourierdlem62  45807  fouriersw  45870
  Copyright terms: Public domain W3C validator