MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcdif Structured version   Visualization version   GIF version

Theorem limcdif 25802
Description: It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
limcdif (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))

Proof of Theorem limcdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6661 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
32adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 = 𝐴)
4 limcrcl 25800 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp2d 1143 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 ⊆ ℂ)
73, 6eqsstrrd 3970 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐴 ⊆ ℂ)
85simp3d 1144 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐵 ∈ ℂ)
97, 8jca 511 . . . 4 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
109ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
11 undif1 4426 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
12 difss 4086 . . . . . . . . . . . 12 (𝐴 ∖ {𝐵}) ⊆ 𝐴
13 fssres 6689 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
141, 12, 13sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
1514fdmd 6661 . . . . . . . . . 10 (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
17 limcrcl 25800 . . . . . . . . . . 11 (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1918simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ)
2016, 19eqsstrrd 3970 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
2118simp3d 1144 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐵 ∈ ℂ)
2221snssd 4761 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → {𝐵} ⊆ ℂ)
2320, 22unssd 4142 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ)
2411, 23eqsstrrid 3974 . . . . . 6 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
2524unssad 4143 . . . . 5 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐴 ⊆ ℂ)
2625, 21jca 511 . . . 4 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2726ex 412 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
28 eqid 2731 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵}))
29 eqid 2731 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
30 eqid 2731 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
311adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
32 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ)
33 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
3428, 29, 30, 31, 32, 33ellimc 25799 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
3511eqcomi 2740 . . . . . . 7 (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
3635oveq2i 7357 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
3735mpteq1i 5182 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
38 elun 4103 . . . . . . . . 9 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}))
39 velsn 4592 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
4039orbi2i 912 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵))
41 pm5.61 1002 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵))
42 fvres 6841 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4342adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4441, 43sylbi 217 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4544ifeq2da 4508 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4640, 45sylbi 217 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4738, 46sylbi 217 . . . . . . . 8 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4847mpteq2ia 5186 . . . . . . 7 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4937, 48eqtr4i 2757 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)))
5014adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
5132ssdifssd 4097 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
5236, 29, 49, 50, 51, 33ellimc 25799 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
5334, 52bitr4d 282 . . . 4 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5453ex 412 . . 3 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))))
5510, 27, 54pm5.21ndd 379 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5655eqrdv 2729 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  cun 3900  wss 3902  ifcif 4475  {csn 4576  cmpt 5172  dom cdm 5616  cres 5618  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  t crest 17321  TopOpenctopn 17322  fldccnfld 21289   CnP ccnp 23138   lim climc 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-rest 17323  df-topn 17324  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cnp 23141  df-xms 24233  df-ms 24234  df-limc 25792
This theorem is referenced by:  dvcnp2  25846  dvcnp2OLD  25847  dvmulbr  25866  dvmulbrOLD  25867  dvrec  25884  fourierdlem62  46205
  Copyright terms: Public domain W3C validator