MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcdif Structured version   Visualization version   GIF version

Theorem limcdif 24945
Description: It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
limcdif (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))

Proof of Theorem limcdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6595 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
32adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 = 𝐴)
4 limcrcl 24943 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp2d 1141 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 ⊆ ℂ)
73, 6eqsstrrd 3956 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐴 ⊆ ℂ)
85simp3d 1142 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐵 ∈ ℂ)
97, 8jca 511 . . . 4 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
109ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
11 undif1 4406 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
12 difss 4062 . . . . . . . . . . . 12 (𝐴 ∖ {𝐵}) ⊆ 𝐴
13 fssres 6624 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
141, 12, 13sylancl 585 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
1514fdmd 6595 . . . . . . . . . 10 (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
17 limcrcl 24943 . . . . . . . . . . 11 (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1918simp2d 1141 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ)
2016, 19eqsstrrd 3956 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
2118simp3d 1142 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐵 ∈ ℂ)
2221snssd 4739 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → {𝐵} ⊆ ℂ)
2320, 22unssd 4116 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ)
2411, 23eqsstrrid 3966 . . . . . 6 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
2524unssad 4117 . . . . 5 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐴 ⊆ ℂ)
2625, 21jca 511 . . . 4 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2726ex 412 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
28 eqid 2738 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵}))
29 eqid 2738 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
30 eqid 2738 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
311adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
32 simprl 767 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ)
33 simprr 769 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
3428, 29, 30, 31, 32, 33ellimc 24942 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
3511eqcomi 2747 . . . . . . 7 (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
3635oveq2i 7266 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
3735mpteq1i 5166 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
38 elun 4079 . . . . . . . . 9 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}))
39 velsn 4574 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
4039orbi2i 909 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵))
41 pm5.61 997 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵))
42 fvres 6775 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4342adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4441, 43sylbi 216 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4544ifeq2da 4488 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4640, 45sylbi 216 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4738, 46sylbi 216 . . . . . . . 8 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4847mpteq2ia 5173 . . . . . . 7 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4937, 48eqtr4i 2769 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)))
5014adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
5132ssdifssd 4073 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
5236, 29, 49, 50, 51, 33ellimc 24942 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
5334, 52bitr4d 281 . . . 4 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5453ex 412 . . 3 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))))
5510, 27, 54pm5.21ndd 380 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5655eqrdv 2736 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  cun 3881  wss 3883  ifcif 4456  {csn 4558  cmpt 5153  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  t crest 17048  TopOpenctopn 17049  fldccnfld 20510   CnP ccnp 22284   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  dvcnp2  24989  dvmulbr  25008  dvrec  25024  fourierdlem62  43599
  Copyright terms: Public domain W3C validator