| Step | Hyp | Ref
| Expression |
| 1 | | limccl.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 2 | 1 | fdmd 6721 |
. . . . . . 7
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 3 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → dom 𝐹 = 𝐴) |
| 4 | | limcrcl 25832 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 5 | 4 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 6 | 5 | simp2d 1143 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → dom 𝐹 ⊆ ℂ) |
| 7 | 3, 6 | eqsstrrd 3999 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → 𝐴 ⊆ ℂ) |
| 8 | 5 | simp3d 1144 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → 𝐵 ∈ ℂ) |
| 9 | 7, 8 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹 limℂ 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 10 | 9 | ex 412 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))) |
| 11 | | undif1 4456 |
. . . . . . 7
⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) |
| 12 | | difss 4116 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
| 13 | | fssres 6749 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) |
| 14 | 1, 12, 13 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) |
| 15 | 14 | fdmd 6721 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵})) |
| 16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵})) |
| 17 | | limcrcl 25832 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 19 | 18 | simp2d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ) |
| 20 | 16, 19 | eqsstrrd 3999 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 21 | 18 | simp3d 1144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → 𝐵 ∈ ℂ) |
| 22 | 21 | snssd 4790 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → {𝐵} ⊆ ℂ) |
| 23 | 20, 22 | unssd 4172 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ) |
| 24 | 11, 23 | eqsstrrid 4003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
| 25 | 24 | unssad 4173 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → 𝐴 ⊆ ℂ) |
| 26 | 25, 21 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
| 27 | 26 | ex 412 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))) |
| 28 | | eqid 2736 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld)
↾t (𝐴
∪ {𝐵})) |
| 29 | | eqid 2736 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 30 | | eqid 2736 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 31 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ) |
| 32 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ) |
| 33 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ) |
| 34 | 28, 29, 30, 31, 32, 33 | ellimc 25831 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP
(TopOpen‘ℂfld))‘𝐵))) |
| 35 | 11 | eqcomi 2745 |
. . . . . . 7
⊢ (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵}) |
| 36 | 35 | oveq2i 7421 |
. . . . . 6
⊢
((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld)
↾t ((𝐴
∖ {𝐵}) ∪ {𝐵})) |
| 37 | 35 | mpteq1i 5216 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 38 | | elun 4133 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵})) |
| 39 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵) |
| 40 | 39 | orbi2i 912 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵)) |
| 41 | | pm5.61 1002 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵)) |
| 42 | | fvres 6900 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹‘𝑧)) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹‘𝑧)) |
| 44 | 41, 43 | sylbi 217 |
. . . . . . . . . . 11
⊢ (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹‘𝑧)) |
| 45 | 44 | ifeq2da 4538 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 46 | 40, 45 | sylbi 217 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 47 | 38, 46 | sylbi 217 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 48 | 47 | mpteq2ia 5221 |
. . . . . . 7
⊢ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) |
| 49 | 37, 48 | eqtr4i 2762 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) |
| 50 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ) |
| 51 | 32 | ssdifssd 4127 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 52 | 36, 29, 49, 50, 51, 33 | ellimc 25831 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹‘𝑧))) ∈
((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP
(TopOpen‘ℂfld))‘𝐵))) |
| 53 | 34, 52 | bitr4d 282 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵))) |
| 54 | 53 | ex 412 |
. . 3
⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)))) |
| 55 | 10, 27, 54 | pm5.21ndd 379 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵))) |
| 56 | 55 | eqrdv 2734 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) limℂ 𝐵)) |