MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcdif Structured version   Visualization version   GIF version

Theorem limcdif 25912
Description: It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
limcdif (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))

Proof of Theorem limcdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6745 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
32adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 = 𝐴)
4 limcrcl 25910 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp2d 1143 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 ⊆ ℂ)
73, 6eqsstrrd 4018 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐴 ⊆ ℂ)
85simp3d 1144 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐵 ∈ ℂ)
97, 8jca 511 . . . 4 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
109ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
11 undif1 4475 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
12 difss 4135 . . . . . . . . . . . 12 (𝐴 ∖ {𝐵}) ⊆ 𝐴
13 fssres 6773 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
141, 12, 13sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
1514fdmd 6745 . . . . . . . . . 10 (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
17 limcrcl 25910 . . . . . . . . . . 11 (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1918simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ)
2016, 19eqsstrrd 4018 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
2118simp3d 1144 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐵 ∈ ℂ)
2221snssd 4808 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → {𝐵} ⊆ ℂ)
2320, 22unssd 4191 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ)
2411, 23eqsstrrid 4022 . . . . . 6 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
2524unssad 4192 . . . . 5 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐴 ⊆ ℂ)
2625, 21jca 511 . . . 4 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2726ex 412 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
28 eqid 2736 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵}))
29 eqid 2736 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
30 eqid 2736 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
311adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
32 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ)
33 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
3428, 29, 30, 31, 32, 33ellimc 25909 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
3511eqcomi 2745 . . . . . . 7 (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
3635oveq2i 7443 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
3735mpteq1i 5237 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
38 elun 4152 . . . . . . . . 9 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}))
39 velsn 4641 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
4039orbi2i 912 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵))
41 pm5.61 1002 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵))
42 fvres 6924 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4342adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4441, 43sylbi 217 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4544ifeq2da 4557 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4640, 45sylbi 217 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4738, 46sylbi 217 . . . . . . . 8 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4847mpteq2ia 5244 . . . . . . 7 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4937, 48eqtr4i 2767 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)))
5014adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
5132ssdifssd 4146 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
5236, 29, 49, 50, 51, 33ellimc 25909 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
5334, 52bitr4d 282 . . . 4 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5453ex 412 . . 3 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))))
5510, 27, 54pm5.21ndd 379 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5655eqrdv 2734 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  cdif 3947  cun 3948  wss 3950  ifcif 4524  {csn 4625  cmpt 5224  dom cdm 5684  cres 5686  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  t crest 17466  TopOpenctopn 17467  fldccnfld 21365   CnP ccnp 23234   lim climc 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-topn 17469  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cnp 23237  df-xms 24331  df-ms 24332  df-limc 25902
This theorem is referenced by:  dvcnp2  25956  dvcnp2OLD  25957  dvmulbr  25976  dvmulbrOLD  25977  dvrec  25994  fourierdlem62  46188
  Copyright terms: Public domain W3C validator