MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcdif Structured version   Visualization version   GIF version

Theorem limcdif 25793
Description: It suffices to consider functions which are not defined at 𝐵 to define the limit of a function. In particular, the value of the original function 𝐹 at 𝐵 does not affect the limit of 𝐹. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
limccl.f (𝜑𝐹:𝐴⟶ℂ)
Assertion
Ref Expression
limcdif (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))

Proof of Theorem limcdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl.f . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
21fdmd 6666 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
32adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 = 𝐴)
4 limcrcl 25791 . . . . . . . 8 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
54adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
65simp2d 1143 . . . . . 6 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → dom 𝐹 ⊆ ℂ)
73, 6eqsstrrd 3973 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐴 ⊆ ℂ)
85simp3d 1144 . . . . 5 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → 𝐵 ∈ ℂ)
97, 8jca 511 . . . 4 ((𝜑𝑥 ∈ (𝐹 lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
109ex 412 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
11 undif1 4429 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
12 difss 4089 . . . . . . . . . . . 12 (𝐴 ∖ {𝐵}) ⊆ 𝐴
13 fssres 6694 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝐵}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
141, 12, 13sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
1514fdmd 6666 . . . . . . . . . 10 (𝜑 → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) = (𝐴 ∖ {𝐵}))
17 limcrcl 25791 . . . . . . . . . . 11 (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1817adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐹 ↾ (𝐴 ∖ {𝐵})):dom (𝐹 ↾ (𝐴 ∖ {𝐵}))⟶ℂ ∧ dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
1918simp2d 1143 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → dom (𝐹 ↾ (𝐴 ∖ {𝐵})) ⊆ ℂ)
2016, 19eqsstrrd 3973 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
2118simp3d 1144 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐵 ∈ ℂ)
2221snssd 4763 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → {𝐵} ⊆ ℂ)
2320, 22unssd 4145 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ ℂ)
2411, 23eqsstrrid 3977 . . . . . 6 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ∪ {𝐵}) ⊆ ℂ)
2524unssad 4146 . . . . 5 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → 𝐴 ⊆ ℂ)
2625, 21jca 511 . . . 4 ((𝜑𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2726ex 412 . . 3 (𝜑 → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) → (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)))
28 eqid 2729 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵}))
29 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
30 eqid 2729 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
311adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐹:𝐴⟶ℂ)
32 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐴 ⊆ ℂ)
33 simprr 772 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → 𝐵 ∈ ℂ)
3428, 29, 30, 31, 32, 33ellimc 25790 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
3511eqcomi 2738 . . . . . . 7 (𝐴 ∪ {𝐵}) = ((𝐴 ∖ {𝐵}) ∪ {𝐵})
3635oveq2i 7364 . . . . . 6 ((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
3735mpteq1i 5186 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
38 elun 4106 . . . . . . . . 9 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}))
39 velsn 4595 . . . . . . . . . . 11 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
4039orbi2i 912 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵))
41 pm5.61 1002 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) ↔ (𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵))
42 fvres 6845 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐴 ∖ {𝐵}) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4342adantr 480 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4441, 43sylbi 217 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) ∧ ¬ 𝑧 = 𝐵) → ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧) = (𝐹𝑧))
4544ifeq2da 4511 . . . . . . . . . 10 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 = 𝐵) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4640, 45sylbi 217 . . . . . . . . 9 ((𝑧 ∈ (𝐴 ∖ {𝐵}) ∨ 𝑧 ∈ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4738, 46sylbi 217 . . . . . . . 8 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) → if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)) = if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4847mpteq2ia 5190 . . . . . . 7 (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧)))
4937, 48eqtr4i 2755 . . . . . 6 (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) = (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, ((𝐹 ↾ (𝐴 ∖ {𝐵}))‘𝑧)))
5014adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐹 ↾ (𝐴 ∖ {𝐵})):(𝐴 ∖ {𝐵})⟶ℂ)
5132ssdifssd 4100 . . . . . 6 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝐴 ∖ {𝐵}) ⊆ ℂ)
5236, 29, 49, 50, 51, 33ellimc 25790 . . . . 5 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵) ↔ (𝑧 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑥, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (𝐴 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)))
5334, 52bitr4d 282 . . . 4 ((𝜑 ∧ (𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5453ex 412 . . 3 (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))))
5510, 27, 54pm5.21ndd 379 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵)))
5655eqrdv 2727 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐹 ↾ (𝐴 ∖ {𝐵})) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  cun 3903  wss 3905  ifcif 4478  {csn 4579  cmpt 5176  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  t crest 17342  TopOpenctopn 17343  fldccnfld 21279   CnP ccnp 23128   lim climc 25779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cnp 23131  df-xms 24224  df-ms 24225  df-limc 25783
This theorem is referenced by:  dvcnp2  25837  dvcnp2OLD  25838  dvmulbr  25857  dvmulbrOLD  25858  dvrec  25875  fourierdlem62  46150
  Copyright terms: Public domain W3C validator