| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > padicabvf | Structured version Visualization version GIF version | ||
| Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| Ref | Expression |
|---|---|
| padicabvf | ⊢ 𝐽:ℙ⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qex 13003 | . . . 4 ⊢ ℚ ∈ V | |
| 2 | 1 | mptex 7243 | . . 3 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) ∈ V |
| 3 | padic.j | . . 3 ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | |
| 4 | 2, 3 | fnmpti 6711 | . 2 ⊢ 𝐽 Fn ℙ |
| 5 | 3 | padicfval 27660 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))))) |
| 6 | prmnn 16711 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℕ) |
| 8 | 7 | nncnd 12282 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℂ) |
| 9 | 7 | nnne0d 12316 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ≠ 0) |
| 10 | df-ne 2941 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0) | |
| 11 | pcqcl 16894 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℤ) | |
| 12 | 11 | anassrs 467 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
| 13 | 10, 12 | sylan2br 595 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
| 14 | 8, 9, 13 | expnegd 14193 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
| 15 | 8, 9, 13 | exprecd 14194 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → ((1 / 𝑝)↑(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
| 16 | 14, 15 | eqtr4d 2780 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = ((1 / 𝑝)↑(𝑝 pCnt 𝑥))) |
| 17 | 16 | ifeq2da 4558 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))) = if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) |
| 18 | 17 | mpteq2dva 5242 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
| 19 | 5, 18 | eqtrd 2777 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
| 20 | 6 | nnrecred 12317 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ ℝ) |
| 21 | 6 | nnred 12281 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
| 22 | prmgt1 16734 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 1 < 𝑝) | |
| 23 | recgt1i 12165 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
| 25 | 24 | simpld 494 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 0 < (1 / 𝑝)) |
| 26 | 24 | simprd 495 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) < 1) |
| 27 | 0xr 11308 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 28 | 1xr 11320 | . . . . . . 7 ⊢ 1 ∈ ℝ* | |
| 29 | elioo2 13428 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))) | |
| 30 | 27, 28, 29 | mp2an 692 | . . . . . 6 ⊢ ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
| 31 | 20, 25, 26, 30 | syl3anbrc 1344 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ (0(,)1)) |
| 32 | qrng.q | . . . . . 6 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 33 | qabsabv.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 34 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) | |
| 35 | 32, 33, 34 | padicabv 27674 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ (1 / 𝑝) ∈ (0(,)1)) → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
| 36 | 31, 35 | mpdan 687 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
| 37 | 19, 36 | eqeltrd 2841 | . . 3 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) ∈ 𝐴) |
| 38 | 37 | rgen 3063 | . 2 ⊢ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴 |
| 39 | ffnfv 7139 | . 2 ⊢ (𝐽:ℙ⟶𝐴 ↔ (𝐽 Fn ℙ ∧ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴)) | |
| 40 | 4, 38, 39 | mpbir2an 711 | 1 ⊢ 𝐽:ℙ⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 ℝ*cxr 11294 < clt 11295 -cneg 11493 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℚcq 12990 (,)cioo 13387 ↑cexp 14102 ℙcprime 16708 pCnt cpc 16874 ↾s cress 17274 AbsValcabv 20809 ℂfldccnfld 21364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-ioo 13391 df-ico 13393 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-prm 16709 df-pc 16875 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-subrng 20546 df-subrg 20570 df-drng 20731 df-abv 20810 df-cnfld 21365 |
| This theorem is referenced by: ostth 27683 |
| Copyright terms: Public domain | W3C validator |