| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > padicabvf | Structured version Visualization version GIF version | ||
| Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| Ref | Expression |
|---|---|
| padicabvf | ⊢ 𝐽:ℙ⟶𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qex 12859 | . . . 4 ⊢ ℚ ∈ V | |
| 2 | 1 | mptex 7157 | . . 3 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) ∈ V |
| 3 | padic.j | . . 3 ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | |
| 4 | 2, 3 | fnmpti 6624 | . 2 ⊢ 𝐽 Fn ℙ |
| 5 | 3 | padicfval 27554 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))))) |
| 6 | prmnn 16585 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
| 7 | 6 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℕ) |
| 8 | 7 | nncnd 12141 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℂ) |
| 9 | 7 | nnne0d 12175 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ≠ 0) |
| 10 | df-ne 2929 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0) | |
| 11 | pcqcl 16768 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℤ) | |
| 12 | 11 | anassrs 467 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
| 13 | 10, 12 | sylan2br 595 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
| 14 | 8, 9, 13 | expnegd 14060 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
| 15 | 8, 9, 13 | exprecd 14061 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → ((1 / 𝑝)↑(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
| 16 | 14, 15 | eqtr4d 2769 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = ((1 / 𝑝)↑(𝑝 pCnt 𝑥))) |
| 17 | 16 | ifeq2da 4505 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))) = if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) |
| 18 | 17 | mpteq2dva 5182 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
| 19 | 5, 18 | eqtrd 2766 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
| 20 | 6 | nnrecred 12176 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ ℝ) |
| 21 | 6 | nnred 12140 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
| 22 | prmgt1 16608 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 1 < 𝑝) | |
| 23 | recgt1i 12019 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
| 25 | 24 | simpld 494 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 0 < (1 / 𝑝)) |
| 26 | 24 | simprd 495 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) < 1) |
| 27 | 0xr 11159 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 28 | 1xr 11171 | . . . . . . 7 ⊢ 1 ∈ ℝ* | |
| 29 | elioo2 13286 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))) | |
| 30 | 27, 28, 29 | mp2an 692 | . . . . . 6 ⊢ ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
| 31 | 20, 25, 26, 30 | syl3anbrc 1344 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ (0(,)1)) |
| 32 | qrng.q | . . . . . 6 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 33 | qabsabv.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 34 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) | |
| 35 | 32, 33, 34 | padicabv 27568 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ (1 / 𝑝) ∈ (0(,)1)) → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
| 36 | 31, 35 | mpdan 687 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
| 37 | 19, 36 | eqeltrd 2831 | . . 3 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) ∈ 𝐴) |
| 38 | 37 | rgen 3049 | . 2 ⊢ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴 |
| 39 | ffnfv 7052 | . 2 ⊢ (𝐽:ℙ⟶𝐴 ↔ (𝐽 Fn ℙ ∧ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴)) | |
| 40 | 4, 38, 39 | mpbir2an 711 | 1 ⊢ 𝐽:ℙ⟶𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 -cneg 11345 / cdiv 11774 ℕcn 12125 ℤcz 12468 ℚcq 12846 (,)cioo 13245 ↑cexp 13968 ℙcprime 16582 pCnt cpc 16748 ↾s cress 17141 AbsValcabv 20723 ℂfldccnfld 21291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-ioo 13249 df-ico 13251 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-subrng 20461 df-subrg 20485 df-drng 20646 df-abv 20724 df-cnfld 21292 |
| This theorem is referenced by: ostth 27577 |
| Copyright terms: Public domain | W3C validator |