Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > padicabvf | Structured version Visualization version GIF version |
Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
Ref | Expression |
---|---|
padicabvf | ⊢ 𝐽:ℙ⟶𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qex 12701 | . . . 4 ⊢ ℚ ∈ V | |
2 | 1 | mptex 7099 | . . 3 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) ∈ V |
3 | padic.j | . . 3 ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) | |
4 | 2, 3 | fnmpti 6576 | . 2 ⊢ 𝐽 Fn ℙ |
5 | 3 | padicfval 26764 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))))) |
6 | prmnn 16379 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
7 | 6 | ad2antrr 723 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℕ) |
8 | 7 | nncnd 11989 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℂ) |
9 | 7 | nnne0d 12023 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ≠ 0) |
10 | df-ne 2944 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0) | |
11 | pcqcl 16557 | . . . . . . . . . . 11 ⊢ ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℤ) | |
12 | 11 | anassrs 468 | . . . . . . . . . 10 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
13 | 10, 12 | sylan2br 595 | . . . . . . . . 9 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝 pCnt 𝑥) ∈ ℤ) |
14 | 8, 9, 13 | expnegd 13871 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
15 | 8, 9, 13 | exprecd 13872 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → ((1 / 𝑝)↑(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥)))) |
16 | 14, 15 | eqtr4d 2781 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = ((1 / 𝑝)↑(𝑝 pCnt 𝑥))) |
17 | 16 | ifeq2da 4491 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))) = if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) |
18 | 17 | mpteq2dva 5174 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
19 | 5, 18 | eqtrd 2778 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))) |
20 | 6 | nnrecred 12024 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ ℝ) |
21 | 6 | nnred 11988 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
22 | prmgt1 16402 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 1 < 𝑝) | |
23 | recgt1i 11872 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) | |
24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
25 | 24 | simpld 495 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 0 < (1 / 𝑝)) |
26 | 24 | simprd 496 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) < 1) |
27 | 0xr 11022 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
28 | 1xr 11034 | . . . . . . 7 ⊢ 1 ∈ ℝ* | |
29 | elioo2 13120 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))) | |
30 | 27, 28, 29 | mp2an 689 | . . . . . 6 ⊢ ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)) |
31 | 20, 25, 26, 30 | syl3anbrc 1342 | . . . . 5 ⊢ (𝑝 ∈ ℙ → (1 / 𝑝) ∈ (0(,)1)) |
32 | qrng.q | . . . . . 6 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
33 | qabsabv.a | . . . . . 6 ⊢ 𝐴 = (AbsVal‘𝑄) | |
34 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) | |
35 | 32, 33, 34 | padicabv 26778 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ (1 / 𝑝) ∈ (0(,)1)) → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
36 | 31, 35 | mpdan 684 | . . . 4 ⊢ (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴) |
37 | 19, 36 | eqeltrd 2839 | . . 3 ⊢ (𝑝 ∈ ℙ → (𝐽‘𝑝) ∈ 𝐴) |
38 | 37 | rgen 3074 | . 2 ⊢ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴 |
39 | ffnfv 6992 | . 2 ⊢ (𝐽:ℙ⟶𝐴 ↔ (𝐽 Fn ℙ ∧ ∀𝑝 ∈ ℙ (𝐽‘𝑝) ∈ 𝐴)) | |
40 | 4, 38, 39 | mpbir2an 708 | 1 ⊢ 𝐽:ℙ⟶𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 ℝ*cxr 11008 < clt 11009 -cneg 11206 / cdiv 11632 ℕcn 11973 ℤcz 12319 ℚcq 12688 (,)cioo 13079 ↑cexp 13782 ℙcprime 16376 pCnt cpc 16537 ↾s cress 16941 AbsValcabv 20076 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-subrg 20022 df-abv 20077 df-cnfld 20598 |
This theorem is referenced by: ostth 26787 |
Copyright terms: Public domain | W3C validator |