Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabvf Structured version   Visualization version   GIF version

 Description: The p-adic absolute value is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
Distinct variable groups:   𝑥,𝑞,𝐴   𝑥,𝑄
Allowed substitution hints:   𝑄(𝑞)   𝐽(𝑥,𝑞)

Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 qex 12401 . . . 4 ℚ ∈ V
21mptex 6977 . . 3 (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) ∈ V
3 padic.j . . 3 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
42, 3fnmpti 6474 . 2 𝐽 Fn ℙ
53padicfval 26299 . . . . 5 (𝑝 ∈ ℙ → (𝐽𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))))
6 prmnn 16070 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
76ad2antrr 725 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℕ)
87nncnd 11690 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ∈ ℂ)
97nnne0d 11724 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑝 ≠ 0)
10 df-ne 2952 . . . . . . . . . 10 (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0)
11 pcqcl 16248 . . . . . . . . . . 11 ((𝑝 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑝 pCnt 𝑥) ∈ ℤ)
1211anassrs 471 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑝 pCnt 𝑥) ∈ ℤ)
1310, 12sylan2br 597 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝 pCnt 𝑥) ∈ ℤ)
148, 9, 13expnegd 13567 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥))))
158, 9, 13exprecd 13568 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → ((1 / 𝑝)↑(𝑝 pCnt 𝑥)) = (1 / (𝑝↑(𝑝 pCnt 𝑥))))
1614, 15eqtr4d 2796 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑝↑-(𝑝 pCnt 𝑥)) = ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))
1716ifeq2da 4452 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥))) = if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))
1817mpteq2dva 5127 . . . . 5 (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑝↑-(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))))
195, 18eqtrd 2793 . . . 4 (𝑝 ∈ ℙ → (𝐽𝑝) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))))
206nnrecred 11725 . . . . . 6 (𝑝 ∈ ℙ → (1 / 𝑝) ∈ ℝ)
216nnred 11689 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
22 prmgt1 16093 . . . . . . . 8 (𝑝 ∈ ℙ → 1 < 𝑝)
23 recgt1i 11575 . . . . . . . 8 ((𝑝 ∈ ℝ ∧ 1 < 𝑝) → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))
2421, 22, 23syl2anc 587 . . . . . . 7 (𝑝 ∈ ℙ → (0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))
2524simpld 498 . . . . . 6 (𝑝 ∈ ℙ → 0 < (1 / 𝑝))
2624simprd 499 . . . . . 6 (𝑝 ∈ ℙ → (1 / 𝑝) < 1)
27 0xr 10726 . . . . . . 7 0 ∈ ℝ*
28 1xr 10738 . . . . . . 7 1 ∈ ℝ*
29 elioo2 12820 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1)))
3027, 28, 29mp2an 691 . . . . . 6 ((1 / 𝑝) ∈ (0(,)1) ↔ ((1 / 𝑝) ∈ ℝ ∧ 0 < (1 / 𝑝) ∧ (1 / 𝑝) < 1))
3120, 25, 26, 30syl3anbrc 1340 . . . . 5 (𝑝 ∈ ℙ → (1 / 𝑝) ∈ (0(,)1))
32 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
33 qabsabv.a . . . . . 6 𝐴 = (AbsVal‘𝑄)
34 eqid 2758 . . . . . 6 (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥))))
3532, 33, 34padicabv 26313 . . . . 5 ((𝑝 ∈ ℙ ∧ (1 / 𝑝) ∈ (0(,)1)) → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴)
3631, 35mpdan 686 . . . 4 (𝑝 ∈ ℙ → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, ((1 / 𝑝)↑(𝑝 pCnt 𝑥)))) ∈ 𝐴)
3719, 36eqeltrd 2852 . . 3 (𝑝 ∈ ℙ → (𝐽𝑝) ∈ 𝐴)
3837rgen 3080 . 2 𝑝 ∈ ℙ (𝐽𝑝) ∈ 𝐴
39 ffnfv 6873 . 2 (𝐽:ℙ⟶𝐴 ↔ (𝐽 Fn ℙ ∧ ∀𝑝 ∈ ℙ (𝐽𝑝) ∈ 𝐴))
404, 38, 39mpbir2an 710 1 𝐽:ℙ⟶𝐴
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ifcif 4420   class class class wbr 5032   ↦ cmpt 5112   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  ℝcr 10574  0cc0 10575  1c1 10576  ℝ*cxr 10712   < clt 10713  -cneg 10909   / cdiv 11335  ℕcn 11674  ℤcz 12020  ℚcq 12388  (,)cioo 12779  ↑cexp 13479  ℙcprime 16067   pCnt cpc 16228   ↾s cress 16542  AbsValcabv 19655  ℂfldccnfld 20166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-ioo 12783  df-ico 12785  df-fz 12940  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-gcd 15894  df-prm 16068  df-pc 16229  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-subg 18343  df-cmn 18975  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-dvr 19504  df-drng 19572  df-subrg 19601  df-abv 19656  df-cnfld 20167 This theorem is referenced by:  ostth  26322
 Copyright terms: Public domain W3C validator