MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafiALT Structured version   Visualization version   GIF version

Theorem imafiALT 9341
Description: Shorter proof of imafi 9171 using ax-pow 5362. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
imafiALT ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafiALT
StepHypRef Expression
1 imadmres 6230 . 2 (𝐹 “ dom (𝐹𝑋)) = (𝐹𝑋)
2 simpr 486 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → 𝑋 ∈ Fin)
3 dmres 6001 . . . . 5 dom (𝐹𝑋) = (𝑋 ∩ dom 𝐹)
4 inss1 4227 . . . . 5 (𝑋 ∩ dom 𝐹) ⊆ 𝑋
53, 4eqsstri 4015 . . . 4 dom (𝐹𝑋) ⊆ 𝑋
6 ssfi 9169 . . . 4 ((𝑋 ∈ Fin ∧ dom (𝐹𝑋) ⊆ 𝑋) → dom (𝐹𝑋) ∈ Fin)
72, 5, 6sylancl 587 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ∈ Fin)
8 resss 6004 . . . . 5 (𝐹𝑋) ⊆ 𝐹
9 dmss 5900 . . . . 5 ((𝐹𝑋) ⊆ 𝐹 → dom (𝐹𝑋) ⊆ dom 𝐹)
108, 9mp1i 13 . . . 4 ((Fun 𝐹𝑋 ∈ Fin) → dom (𝐹𝑋) ⊆ dom 𝐹)
11 fores 6812 . . . 4 ((Fun 𝐹 ∧ dom (𝐹𝑋) ⊆ dom 𝐹) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
1210, 11syldan 592 . . 3 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋)))
13 fofi 9334 . . 3 ((dom (𝐹𝑋) ∈ Fin ∧ (𝐹 ↾ dom (𝐹𝑋)):dom (𝐹𝑋)–onto→(𝐹 “ dom (𝐹𝑋))) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
147, 12, 13syl2anc 585 . 2 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹 “ dom (𝐹𝑋)) ∈ Fin)
151, 14eqeltrrid 2839 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  cin 3946  wss 3947  dom cdm 5675  cres 5677  cima 5678  Fun wfun 6534  ontowfo 6538  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7851  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-fin 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator