| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | limsupval.1 | . . . . 5
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) | 
| 2 | 1 | limsupgval 15513 | . . . 4
⊢ (𝐶 ∈ ℝ → (𝐺‘𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < )) | 
| 3 | 2 | 3ad2ant2 1134 | . . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝐺‘𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < )) | 
| 4 | 3 | breq1d 5152 | . 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐺‘𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝐴)) | 
| 5 |  | inss2 4237 | . . 3
⊢ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)
⊆ ℝ* | 
| 6 |  | simp3 1138 | . . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐴 ∈
ℝ*) | 
| 7 |  | supxrleub 13369 | . . 3
⊢ ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)
⊆ ℝ* ∧ 𝐴 ∈ ℝ*) →
(sup(((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴)) | 
| 8 | 5, 6, 7 | sylancr 587 | . 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (sup(((𝐹 “
(𝐶[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴)) | 
| 9 |  | imassrn 6088 | . . . . . . 7
⊢ (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹 | 
| 10 |  | simp1r 1198 | . . . . . . . 8
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐹:𝐵⟶ℝ*) | 
| 11 | 10 | frnd 6743 | . . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ran 𝐹 ⊆
ℝ*) | 
| 12 | 9, 11 | sstrid 3994 | . . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝐹 “ (𝐶[,)+∞)) ⊆
ℝ*) | 
| 13 |  | dfss2 3968 | . . . . . 6
⊢ ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*
↔ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝐶[,)+∞))) | 
| 14 | 12, 13 | sylib 218 | . . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝐶[,)+∞))) | 
| 15 |  | imadmres 6253 | . . . . 5
⊢ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞)) | 
| 16 | 14, 15 | eqtr4di 2794 | . . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ dom (𝐹 ↾
(𝐶[,)+∞)))) | 
| 17 | 16 | raleqdv 3325 | . . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴)) | 
| 18 | 10 | ffnd 6736 | . . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐹 Fn 𝐵) | 
| 19 | 10 | fdmd 6745 | . . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom 𝐹 = 𝐵) | 
| 20 | 19 | ineq2d 4219 | . . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐶[,)+∞)
∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵)) | 
| 21 |  | dmres 6029 | . . . . . 6
⊢ dom
(𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹) | 
| 22 |  | incom 4208 | . . . . . 6
⊢ (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵) | 
| 23 | 20, 21, 22 | 3eqtr4g 2801 | . . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom (𝐹 ↾
(𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞))) | 
| 24 |  | inss1 4236 | . . . . 5
⊢ (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵 | 
| 25 | 23, 24 | eqsstrdi 4027 | . . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom (𝐹 ↾
(𝐶[,)+∞)) ⊆
𝐵) | 
| 26 |  | breq1 5145 | . . . . 5
⊢ (𝑥 = (𝐹‘𝑗) → (𝑥 ≤ 𝐴 ↔ (𝐹‘𝑗) ≤ 𝐴)) | 
| 27 | 26 | ralima 7258 | . . . 4
⊢ ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴)) | 
| 28 | 18, 25, 27 | syl2anc 584 | . . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
(𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴)) | 
| 29 | 23 | eleq2d 2826 | . . . . . . . 8
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)))) | 
| 30 |  | elin 3966 | . . . . . . . 8
⊢ (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞))) | 
| 31 | 29, 30 | bitrdi 287 | . . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞)))) | 
| 32 |  | simpl2 1192 | . . . . . . . . 9
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ ℝ) | 
| 33 |  | simp1l 1197 | . . . . . . . . . 10
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐵 ⊆
ℝ) | 
| 34 | 33 | sselda 3982 | . . . . . . . . 9
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → 𝑗 ∈ ℝ) | 
| 35 |  | elicopnf 13486 | . . . . . . . . . 10
⊢ (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶 ≤ 𝑗))) | 
| 36 | 35 | baibd 539 | . . . . . . . . 9
⊢ ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶 ≤ 𝑗)) | 
| 37 | 32, 34, 36 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶 ≤ 𝑗)) | 
| 38 | 37 | pm5.32da 579 | . . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗))) | 
| 39 | 31, 38 | bitrd 279 | . . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗))) | 
| 40 | 39 | imbi1d 341 | . . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ dom
(𝐹 ↾ (𝐶[,)+∞)) → (𝐹‘𝑗) ≤ 𝐴) ↔ ((𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝐴))) | 
| 41 |  | impexp 450 | . . . . 5
⊢ (((𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑗 ∈ 𝐵 → (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) | 
| 42 | 40, 41 | bitrdi 287 | . . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ dom
(𝐹 ↾ (𝐶[,)+∞)) → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑗 ∈ 𝐵 → (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)))) | 
| 43 | 42 | ralbidv2 3173 | . . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑗 ∈
dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) | 
| 44 | 17, 28, 43 | 3bitrd 305 | . 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) | 
| 45 | 4, 8, 44 | 3bitrd 305 | 1
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐺‘𝐶) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |