| Step | Hyp | Ref
| Expression |
| 1 | | limsupval.1 |
. . . . 5
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 2 | 1 | limsupgval 15497 |
. . . 4
⊢ (𝐶 ∈ ℝ → (𝐺‘𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 3 | 2 | 3ad2ant2 1134 |
. . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝐺‘𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < )) |
| 4 | 3 | breq1d 5134 |
. 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐺‘𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*),
ℝ*, < ) ≤ 𝐴)) |
| 5 | | inss2 4218 |
. . 3
⊢ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)
⊆ ℝ* |
| 6 | | simp3 1138 |
. . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐴 ∈
ℝ*) |
| 7 | | supxrleub 13347 |
. . 3
⊢ ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)
⊆ ℝ* ∧ 𝐴 ∈ ℝ*) →
(sup(((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴)) |
| 8 | 5, 6, 7 | sylancr 587 |
. 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (sup(((𝐹 “
(𝐶[,)+∞)) ∩
ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴)) |
| 9 | | imassrn 6063 |
. . . . . . 7
⊢ (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹 |
| 10 | | simp1r 1199 |
. . . . . . . 8
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐹:𝐵⟶ℝ*) |
| 11 | 10 | frnd 6719 |
. . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ran 𝐹 ⊆
ℝ*) |
| 12 | 9, 11 | sstrid 3975 |
. . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝐹 “ (𝐶[,)+∞)) ⊆
ℝ*) |
| 13 | | dfss2 3949 |
. . . . . 6
⊢ ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*
↔ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝐶[,)+∞))) |
| 14 | 12, 13 | sylib 218 |
. . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ (𝐶[,)+∞))) |
| 15 | | imadmres 6228 |
. . . . 5
⊢ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞)) |
| 16 | 14, 15 | eqtr4di 2789 |
. . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*) = (𝐹
“ dom (𝐹 ↾
(𝐶[,)+∞)))) |
| 17 | 16 | raleqdv 3309 |
. . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴)) |
| 18 | 10 | ffnd 6712 |
. . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐹 Fn 𝐵) |
| 19 | 10 | fdmd 6721 |
. . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom 𝐹 = 𝐵) |
| 20 | 19 | ineq2d 4200 |
. . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐶[,)+∞)
∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵)) |
| 21 | | dmres 6004 |
. . . . . 6
⊢ dom
(𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹) |
| 22 | | incom 4189 |
. . . . . 6
⊢ (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵) |
| 23 | 20, 21, 22 | 3eqtr4g 2796 |
. . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom (𝐹 ↾
(𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞))) |
| 24 | | inss1 4217 |
. . . . 5
⊢ (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵 |
| 25 | 23, 24 | eqsstrdi 4008 |
. . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ dom (𝐹 ↾
(𝐶[,)+∞)) ⊆
𝐵) |
| 26 | | breq1 5127 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑗) → (𝑥 ≤ 𝐴 ↔ (𝐹‘𝑗) ≤ 𝐴)) |
| 27 | 26 | ralima 7234 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴)) |
| 28 | 18, 25, 27 | syl2anc 584 |
. . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
(𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥 ≤ 𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴)) |
| 29 | 23 | eleq2d 2821 |
. . . . . . . 8
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)))) |
| 30 | | elin 3947 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞))) |
| 31 | 29, 30 | bitrdi 287 |
. . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞)))) |
| 32 | | simpl2 1193 |
. . . . . . . . 9
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ ℝ) |
| 33 | | simp1l 1198 |
. . . . . . . . . 10
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ 𝐵 ⊆
ℝ) |
| 34 | 33 | sselda 3963 |
. . . . . . . . 9
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → 𝑗 ∈ ℝ) |
| 35 | | elicopnf 13467 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶 ≤ 𝑗))) |
| 36 | 35 | baibd 539 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶 ≤ 𝑗)) |
| 37 | 32, 34, 36 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
∧ 𝑗 ∈ 𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶 ≤ 𝑗)) |
| 38 | 37 | pm5.32da 579 |
. . . . . . 7
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ 𝐵 ∧ 𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗))) |
| 39 | 31, 38 | bitrd 279 |
. . . . . 6
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗))) |
| 40 | 39 | imbi1d 341 |
. . . . 5
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ dom
(𝐹 ↾ (𝐶[,)+∞)) → (𝐹‘𝑗) ≤ 𝐴) ↔ ((𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝐴))) |
| 41 | | impexp 450 |
. . . . 5
⊢ (((𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑗 ∈ 𝐵 → (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
| 42 | 40, 41 | bitrdi 287 |
. . . 4
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝑗 ∈ dom
(𝐹 ↾ (𝐶[,)+∞)) → (𝐹‘𝑗) ≤ 𝐴) ↔ (𝑗 ∈ 𝐵 → (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)))) |
| 43 | 42 | ralbidv2 3160 |
. . 3
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑗 ∈
dom (𝐹 ↾ (𝐶[,)+∞))(𝐹‘𝑗) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
| 44 | 17, 28, 43 | 3bitrd 305 |
. 2
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ (∀𝑥 ∈
((𝐹 “ (𝐶[,)+∞)) ∩
ℝ*)𝑥 ≤
𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |
| 45 | 4, 8, 44 | 3bitrd 305 |
1
⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*)
→ ((𝐺‘𝐶) ≤ 𝐴 ↔ ∀𝑗 ∈ 𝐵 (𝐶 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴))) |