MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   GIF version

Theorem limsupgle 14828
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgle (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝐶,𝑗,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑗,𝑘)

Proof of Theorem limsupgle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsupgval 14827 . . . 4 (𝐶 ∈ ℝ → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
323ad2ant2 1130 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
43breq1d 5069 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴))
5 inss2 4206 . . 3 ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*
6 simp3 1134 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
7 supxrleub 12713 . . 3 ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
85, 6, 7sylancr 589 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
9 imassrn 5935 . . . . . . 7 (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹
10 simp1r 1194 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
1110frnd 6516 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ran 𝐹 ⊆ ℝ*)
129, 11sstrid 3978 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*)
13 df-ss 3952 . . . . . 6 ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
1412, 13sylib 220 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
15 imadmres 6086 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞))
1614, 15syl6eqr 2874 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))))
1716raleqdv 3416 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴))
1810ffnd 6510 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹 Fn 𝐵)
1910fdmd 6518 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom 𝐹 = 𝐵)
2019ineq2d 4189 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐶[,)+∞) ∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵))
21 dmres 5870 . . . . . 6 dom (𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹)
22 incom 4178 . . . . . 6 (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵)
2320, 21, 223eqtr4g 2881 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞)))
24 inss1 4205 . . . . 5 (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵
2523, 24eqsstrdi 4021 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵)
26 breq1 5062 . . . . 5 (𝑥 = (𝐹𝑗) → (𝑥𝐴 ↔ (𝐹𝑗) ≤ 𝐴))
2726ralima 6994 . . . 4 ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2818, 25, 27syl2anc 586 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2923eleq2d 2898 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞))))
30 elin 4169 . . . . . . . 8 (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞)))
3129, 30syl6bb 289 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞))))
32 simpl2 1188 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝐶 ∈ ℝ)
33 simp1l 1193 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐵 ⊆ ℝ)
3433sselda 3967 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
35 elicopnf 12827 . . . . . . . . . 10 (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶𝑗)))
3635baibd 542 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3732, 34, 36syl2anc 586 . . . . . . . 8 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3837pm5.32da 581 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗𝐵𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
3931, 38bitrd 281 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4039imbi1d 344 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ ((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴)))
41 impexp 453 . . . . 5 (((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4240, 41syl6bb 289 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴))))
4342ralbidv2 3195 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4417, 28, 433bitrd 307 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
454, 8, 443bitrd 307 1 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cin 3935  wss 3936   class class class wbr 5059  cmpt 5139  dom cdm 5550  ran crn 5551  cres 5552  cima 5553   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  supcsup 8898  cr 10530  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  [,)cico 12734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-ico 12738
This theorem is referenced by:  limsupgre  14832  limsupbnd1  14833  limsupbnd2  14834  mbflimsup  24261
  Copyright terms: Public domain W3C validator