MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   GIF version

Theorem limsupgle 14827
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgle (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝐶,𝑗,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑗,𝑘)

Proof of Theorem limsupgle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsupgval 14826 . . . 4 (𝐶 ∈ ℝ → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
323ad2ant2 1128 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
43breq1d 5072 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴))
5 inss2 4209 . . 3 ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*
6 simp3 1132 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
7 supxrleub 12712 . . 3 ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
85, 6, 7sylancr 587 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
9 imassrn 5937 . . . . . . 7 (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹
10 simp1r 1192 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
1110frnd 6517 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ran 𝐹 ⊆ ℝ*)
129, 11sstrid 3981 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*)
13 df-ss 3955 . . . . . 6 ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
1412, 13sylib 219 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
15 imadmres 6088 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞))
1614, 15syl6eqr 2878 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))))
1716raleqdv 3420 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴))
1810ffnd 6511 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹 Fn 𝐵)
1910fdmd 6519 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom 𝐹 = 𝐵)
2019ineq2d 4192 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐶[,)+∞) ∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵))
21 dmres 5873 . . . . . 6 dom (𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹)
22 incom 4181 . . . . . 6 (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵)
2320, 21, 223eqtr4g 2885 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞)))
24 inss1 4208 . . . . 5 (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵
2523, 24eqsstrdi 4024 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵)
26 breq1 5065 . . . . 5 (𝑥 = (𝐹𝑗) → (𝑥𝐴 ↔ (𝐹𝑗) ≤ 𝐴))
2726ralima 6997 . . . 4 ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2818, 25, 27syl2anc 584 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2923eleq2d 2902 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞))))
30 elin 4172 . . . . . . . 8 (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞)))
3129, 30syl6bb 288 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞))))
32 simpl2 1186 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝐶 ∈ ℝ)
33 simp1l 1191 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐵 ⊆ ℝ)
3433sselda 3970 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
35 elicopnf 12826 . . . . . . . . . 10 (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶𝑗)))
3635baibd 540 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3732, 34, 36syl2anc 584 . . . . . . . 8 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3837pm5.32da 579 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗𝐵𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
3931, 38bitrd 280 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4039imbi1d 343 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ ((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴)))
41 impexp 451 . . . . 5 (((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4240, 41syl6bb 288 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴))))
4342ralbidv2 3199 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4417, 28, 433bitrd 306 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
454, 8, 443bitrd 306 1 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  cin 3938  wss 3939   class class class wbr 5062  cmpt 5142  dom cdm 5553  ran crn 5554  cres 5555  cima 5556   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  supcsup 8896  cr 10528  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  [,)cico 12733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-ico 12737
This theorem is referenced by:  limsupgre  14831  limsupbnd1  14832  limsupbnd2  14833  mbflimsup  24184
  Copyright terms: Public domain W3C validator