MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   GIF version

Theorem limsupgle 15514
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsupgle (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝐶,𝑗,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑗,𝑘)

Proof of Theorem limsupgle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsupgval 15513 . . . 4 (𝐶 ∈ ℝ → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
323ad2ant2 1134 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐺𝐶) = sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ))
43breq1d 5152 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴))
5 inss2 4237 . . 3 ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*
6 simp3 1138 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
7 supxrleub 13369 . . 3 ((((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
85, 6, 7sylancr 587 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (sup(((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴))
9 imassrn 6088 . . . . . . 7 (𝐹 “ (𝐶[,)+∞)) ⊆ ran 𝐹
10 simp1r 1198 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
1110frnd 6743 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ran 𝐹 ⊆ ℝ*)
129, 11sstrid 3994 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝐹 “ (𝐶[,)+∞)) ⊆ ℝ*)
13 dfss2 3968 . . . . . 6 ((𝐹 “ (𝐶[,)+∞)) ⊆ ℝ* ↔ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
1412, 13sylib 218 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ (𝐶[,)+∞)))
15 imadmres 6253 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))) = (𝐹 “ (𝐶[,)+∞))
1614, 15eqtr4di 2794 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*) = (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞))))
1716raleqdv 3325 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴))
1810ffnd 6736 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐹 Fn 𝐵)
1910fdmd 6745 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom 𝐹 = 𝐵)
2019ineq2d 4219 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐶[,)+∞) ∩ dom 𝐹) = ((𝐶[,)+∞) ∩ 𝐵))
21 dmres 6029 . . . . . 6 dom (𝐹 ↾ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ dom 𝐹)
22 incom 4208 . . . . . 6 (𝐵 ∩ (𝐶[,)+∞)) = ((𝐶[,)+∞) ∩ 𝐵)
2320, 21, 223eqtr4g 2801 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) = (𝐵 ∩ (𝐶[,)+∞)))
24 inss1 4236 . . . . 5 (𝐵 ∩ (𝐶[,)+∞)) ⊆ 𝐵
2523, 24eqsstrdi 4027 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵)
26 breq1 5145 . . . . 5 (𝑥 = (𝐹𝑗) → (𝑥𝐴 ↔ (𝐹𝑗) ≤ 𝐴))
2726ralima 7258 . . . 4 ((𝐹 Fn 𝐵 ∧ dom (𝐹 ↾ (𝐶[,)+∞)) ⊆ 𝐵) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2818, 25, 27syl2anc 584 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ (𝐹 “ dom (𝐹 ↾ (𝐶[,)+∞)))𝑥𝐴 ↔ ∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴))
2923eleq2d 2826 . . . . . . . 8 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ 𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞))))
30 elin 3966 . . . . . . . 8 (𝑗 ∈ (𝐵 ∩ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞)))
3129, 30bitrdi 287 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝑗 ∈ (𝐶[,)+∞))))
32 simpl2 1192 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝐶 ∈ ℝ)
33 simp1l 1197 . . . . . . . . . 10 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → 𝐵 ⊆ ℝ)
3433sselda 3982 . . . . . . . . 9 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → 𝑗 ∈ ℝ)
35 elicopnf 13486 . . . . . . . . . 10 (𝐶 ∈ ℝ → (𝑗 ∈ (𝐶[,)+∞) ↔ (𝑗 ∈ ℝ ∧ 𝐶𝑗)))
3635baibd 539 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3732, 34, 36syl2anc 584 . . . . . . . 8 ((((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) ∧ 𝑗𝐵) → (𝑗 ∈ (𝐶[,)+∞) ↔ 𝐶𝑗))
3837pm5.32da 579 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗𝐵𝑗 ∈ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
3931, 38bitrd 279 . . . . . 6 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) ↔ (𝑗𝐵𝐶𝑗)))
4039imbi1d 341 . . . . 5 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ ((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴)))
41 impexp 450 . . . . 5 (((𝑗𝐵𝐶𝑗) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4240, 41bitrdi 287 . . . 4 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞)) → (𝐹𝑗) ≤ 𝐴) ↔ (𝑗𝐵 → (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴))))
4342ralbidv2 3173 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑗 ∈ dom (𝐹 ↾ (𝐶[,)+∞))(𝐹𝑗) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
4417, 28, 433bitrd 305 . 2 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → (∀𝑥 ∈ ((𝐹 “ (𝐶[,)+∞)) ∩ ℝ*)𝑥𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
454, 8, 443bitrd 305 1 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*) → ((𝐺𝐶) ≤ 𝐴 ↔ ∀𝑗𝐵 (𝐶𝑗 → (𝐹𝑗) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  cin 3949  wss 3950   class class class wbr 5142  cmpt 5224  dom cdm 5684  ran crn 5685  cres 5686  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  supcsup 9481  cr 11155  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  [,)cico 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-ico 13394
This theorem is referenced by:  limsupgre  15518  limsupbnd1  15519  limsupbnd2  15520  mbflimsup  25702
  Copyright terms: Public domain W3C validator