Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgruhgr Structured version   Visualization version   GIF version

Theorem isubgruhgr 47872
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgruhgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)

Proof of Theorem isubgruhgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eqid 2730 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 28996 . . . . . 6 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
43adantr 480 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
5 dmresss 5985 . . . . . 6 dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺)
65a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺))
7 imadmres 6210 . . . . . 6 ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
8 ffvelcdm 7056 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}))
9 eldifsni 4757 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
1110ex 412 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
123, 11syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UHGraph → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1312adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1413imp 406 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
15 fvexd 6876 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ V)
16 id 22 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆)
1715, 16elpwd 4572 . . . . . . . . . . . 12 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆)
1814, 17anim12ci 614 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
19 eldifsn 4753 . . . . . . . . . . 11 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
2018, 19sylibr 234 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
2120ex 412 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2221ralrimiva 3126 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
23 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝑦 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑦))
2423sseq1d 3981 . . . . . . . . 9 (𝑥 = 𝑦 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆))
2524ralrab 3668 . . . . . . . 8 (∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2622, 25sylibr 234 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
27 ffun 6694 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → Fun (iEdg‘𝐺))
28 ssrab2 4046 . . . . . . . . . . 11 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
2927, 28jctir 520 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
303, 29syl 17 . . . . . . . . 9 (𝐺 ∈ UHGraph → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
3130adantr 480 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
32 funimass4 6928 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3331, 32syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3426, 33mpbird 257 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}))
357, 34eqsstrid 3988 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) ⊆ (𝒫 𝑆 ∖ {∅}))
364, 6, 35fssrescdmd 7101 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
37 resdmres 6208 . . . . . 6 ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
3837eqcomi 2739 . . . . 5 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) = ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
3938feq1i 6682 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
4036, 39sylibr 234 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
411, 2isubgriedg 47867 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
4241dmeqd 5872 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom (iEdg‘(𝐺 ISubGr 𝑆)) = dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
431isubgrvtx 47871 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
4443pweqd 4583 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) = 𝒫 𝑆)
4544difeq1d 4091 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) = (𝒫 𝑆 ∖ {∅}))
4641, 42, 45feq123d 6680 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})))
4740, 46mpbird 257 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))
48 ovexd 7425 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ V)
49 eqid 2730 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
50 eqid 2730 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
5149, 50isuhgr 28994 . . 3 ((𝐺 ISubGr 𝑆) ∈ V → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5248, 51syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5347, 52mpbird 257 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  iEdgciedg 28931  UHGraphcuhgr 28990   ISubGr cisubgr 47864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-vtx 28932  df-iedg 28933  df-uhgr 28992  df-isubgr 47865
This theorem is referenced by:  isubgrsubgr  47873  grlicref  48008  grlicsym  48009  clnbgr3stgrgrlic  48015
  Copyright terms: Public domain W3C validator