Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgruhgr Structured version   Visualization version   GIF version

Theorem isubgruhgr 47881
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgruhgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)

Proof of Theorem isubgruhgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eqid 2735 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 29041 . . . . . 6 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
43adantr 480 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
5 dmresss 5998 . . . . . 6 dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺)
65a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺))
7 imadmres 6223 . . . . . 6 ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
8 ffvelcdm 7071 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}))
9 eldifsni 4766 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
1110ex 412 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
123, 11syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UHGraph → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1312adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1413imp 406 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
15 fvexd 6891 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ V)
16 id 22 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆)
1715, 16elpwd 4581 . . . . . . . . . . . 12 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆)
1814, 17anim12ci 614 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
19 eldifsn 4762 . . . . . . . . . . 11 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
2018, 19sylibr 234 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
2120ex 412 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2221ralrimiva 3132 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
23 fveq2 6876 . . . . . . . . . 10 (𝑥 = 𝑦 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑦))
2423sseq1d 3990 . . . . . . . . 9 (𝑥 = 𝑦 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆))
2524ralrab 3677 . . . . . . . 8 (∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2622, 25sylibr 234 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
27 ffun 6709 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → Fun (iEdg‘𝐺))
28 ssrab2 4055 . . . . . . . . . . 11 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
2927, 28jctir 520 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
303, 29syl 17 . . . . . . . . 9 (𝐺 ∈ UHGraph → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
3130adantr 480 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
32 funimass4 6943 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3331, 32syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3426, 33mpbird 257 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}))
357, 34eqsstrid 3997 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) ⊆ (𝒫 𝑆 ∖ {∅}))
364, 6, 35fssrescdmd 7116 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
37 resdmres 6221 . . . . . 6 ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
3837eqcomi 2744 . . . . 5 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) = ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
3938feq1i 6697 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
4036, 39sylibr 234 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
411, 2isubgriedg 47876 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
4241dmeqd 5885 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom (iEdg‘(𝐺 ISubGr 𝑆)) = dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
431isubgrvtx 47880 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
4443pweqd 4592 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) = 𝒫 𝑆)
4544difeq1d 4100 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) = (𝒫 𝑆 ∖ {∅}))
4641, 42, 45feq123d 6695 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})))
4740, 46mpbird 257 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))
48 ovexd 7440 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ V)
49 eqid 2735 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
50 eqid 2735 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
5149, 50isuhgr 29039 . . 3 ((𝐺 ISubGr 𝑆) ∈ V → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5248, 51syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5347, 52mpbird 257 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  dom cdm 5654  cres 5656  cima 5657  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   ISubGr cisubgr 47873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-vtx 28977  df-iedg 28978  df-uhgr 29037  df-isubgr 47874
This theorem is referenced by:  isubgrsubgr  47882  grlicref  48017  grlicsym  48018  clnbgr3stgrgrlic  48024
  Copyright terms: Public domain W3C validator