Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgruhgr Structured version   Visualization version   GIF version

Theorem isubgruhgr 47905
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgruhgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)

Proof of Theorem isubgruhgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eqid 2731 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 29041 . . . . . 6 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
43adantr 480 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
5 dmresss 5960 . . . . . 6 dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺)
65a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺))
7 imadmres 6181 . . . . . 6 ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
8 ffvelcdm 7014 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}))
9 eldifsni 4742 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
1110ex 412 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
123, 11syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UHGraph → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1312adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1413imp 406 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
15 fvexd 6837 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ V)
16 id 22 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆)
1715, 16elpwd 4556 . . . . . . . . . . . 12 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆)
1814, 17anim12ci 614 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
19 eldifsn 4738 . . . . . . . . . . 11 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
2018, 19sylibr 234 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
2120ex 412 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2221ralrimiva 3124 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
23 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑦 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑦))
2423sseq1d 3966 . . . . . . . . 9 (𝑥 = 𝑦 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆))
2524ralrab 3653 . . . . . . . 8 (∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2622, 25sylibr 234 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
27 ffun 6654 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → Fun (iEdg‘𝐺))
28 ssrab2 4030 . . . . . . . . . . 11 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
2927, 28jctir 520 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
303, 29syl 17 . . . . . . . . 9 (𝐺 ∈ UHGraph → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
3130adantr 480 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
32 funimass4 6886 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3331, 32syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3426, 33mpbird 257 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}))
357, 34eqsstrid 3973 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) ⊆ (𝒫 𝑆 ∖ {∅}))
364, 6, 35fssrescdmd 7059 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
37 resdmres 6179 . . . . . 6 ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
3837eqcomi 2740 . . . . 5 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) = ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
3938feq1i 6642 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
4036, 39sylibr 234 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
411, 2isubgriedg 47900 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
4241dmeqd 5845 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom (iEdg‘(𝐺 ISubGr 𝑆)) = dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
431isubgrvtx 47904 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
4443pweqd 4567 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) = 𝒫 𝑆)
4544difeq1d 4075 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) = (𝒫 𝑆 ∖ {∅}))
4641, 42, 45feq123d 6640 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})))
4740, 46mpbird 257 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))
48 ovexd 7381 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ V)
49 eqid 2731 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
50 eqid 2731 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
5149, 50isuhgr 29039 . . 3 ((𝐺 ISubGr 𝑆) ∈ V → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5248, 51syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5347, 52mpbird 257 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3899  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576  dom cdm 5616  cres 5618  cima 5619  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   ISubGr cisubgr 47897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-vtx 28977  df-iedg 28978  df-uhgr 29037  df-isubgr 47898
This theorem is referenced by:  isubgrsubgr  47906  grlicref  48049  grlicsym  48050  clnbgr3stgrgrlim  48056  clnbgr3stgrgrlic  48057
  Copyright terms: Public domain W3C validator