Step | Hyp | Ref
| Expression |
1 | | isubgrvtx.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | eqid 2740 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
3 | 1, 2 | uhgrf 29097 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅})) |
5 | | dmresss 6040 |
. . . . . 6
⊢ dom
((iEdg‘𝐺) ↾
{𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺) |
6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺)) |
7 | | imadmres 6265 |
. . . . . 6
⊢
((iEdg‘𝐺)
“ dom ((iEdg‘𝐺)
↾ {𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) |
8 | | ffvelcdm 7115 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅})) |
9 | | eldifsni 4815 |
. . . . . . . . . . . . . . . . 17
⊢
(((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}) →
((iEdg‘𝐺)‘𝑦) ≠ ∅) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅) |
11 | 10 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)) |
12 | 3, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ UHGraph → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)) |
14 | 13 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅) |
15 | | fvexd 6935 |
. . . . . . . . . . . . 13
⊢
(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ V) |
16 | | id 22 |
. . . . . . . . . . . . 13
⊢
(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) |
17 | 15, 16 | elpwd 4628 |
. . . . . . . . . . . 12
⊢
(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆) |
18 | 14, 17 | anim12ci 613 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅)) |
19 | | eldifsn 4811 |
. . . . . . . . . . 11
⊢
(((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔
(((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅)) |
20 | 18, 19 | sylibr 234 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})) |
21 | 20 | ex 412 |
. . . . . . . . 9
⊢ (((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))) |
22 | 21 | ralrimiva 3152 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))) |
23 | | fveq2 6920 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑦)) |
24 | 23 | sseq1d 4040 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆)) |
25 | 24 | ralrab 3715 |
. . . . . . . 8
⊢
(∀𝑦 ∈
{𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))) |
26 | 22, 25 | sylibr 234 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})) |
27 | | ffun 6750 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → Fun
(iEdg‘𝐺)) |
28 | | ssrab2 4103 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺) |
29 | 27, 28 | jctir 520 |
. . . . . . . . . 10
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (Fun
(iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))) |
30 | 3, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph → (Fun
(iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺))) |
32 | | funimass4 6986 |
. . . . . . . 8
⊢ ((Fun
(iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))) |
33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))) |
34 | 26, 33 | mpbird 257 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅})) |
35 | 7, 34 | eqsstrid 4057 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) ⊆ (𝒫 𝑆 ∖ {∅})) |
36 | 4, 6, 35 | fssrescdmd 7160 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})) |
37 | | resdmres 6263 |
. . . . . 6
⊢
((iEdg‘𝐺)
↾ dom ((iEdg‘𝐺)
↾ {𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) |
38 | 37 | eqcomi 2749 |
. . . . 5
⊢
((iEdg‘𝐺)
↾ {𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) = ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
39 | 38 | feq1i 6738 |
. . . 4
⊢
(((iEdg‘𝐺)
↾ {𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}) ↔
((iEdg‘𝐺) ↾ dom
((iEdg‘𝐺) ↾
{𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})) |
40 | 36, 39 | sylibr 234 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})) |
41 | 1, 2 | isubgriedg 47735 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
42 | 41 | dmeqd 5930 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → dom (iEdg‘(𝐺 ISubGr 𝑆)) = dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
43 | 1 | isubgrvtx 47737 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
44 | 43 | pweqd 4639 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) = 𝒫 𝑆) |
45 | 44 | difeq1d 4148 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) = (𝒫 𝑆 ∖
{∅})) |
46 | 41, 42, 45 | feq123d 6736 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) ↔
((iEdg‘𝐺) ↾
{𝑥 ∈ dom
(iEdg‘𝐺) ∣
((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))) |
47 | 40, 46 | mpbird 257 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})) |
48 | | ovexd 7483 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ V) |
49 | | eqid 2740 |
. . . 4
⊢
(Vtx‘(𝐺 ISubGr
𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆)) |
50 | | eqid 2740 |
. . . 4
⊢
(iEdg‘(𝐺
ISubGr 𝑆)) =
(iEdg‘(𝐺 ISubGr 𝑆)) |
51 | 49, 50 | isuhgr 29095 |
. . 3
⊢ ((𝐺 ISubGr 𝑆) ∈ V → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))) |
52 | 48, 51 | syl 17 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))) |
53 | 47, 52 | mpbird 257 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) |