Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgruhgr Structured version   Visualization version   GIF version

Theorem isubgruhgr 47469
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgruhgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)

Proof of Theorem isubgruhgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 eqid 2726 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2uhgrf 28995 . . . . . 6 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
43adantr 479 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
5 dmresss 6012 . . . . . 6 dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺)
65a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ dom (iEdg‘𝐺))
7 imadmres 6237 . . . . . 6 ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
8 ffvelcdm 7087 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}))
9 eldifsni 4789 . . . . . . . . . . . . . . . . 17 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑉 ∖ {∅}) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
108, 9syl 17 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
1110ex 411 . . . . . . . . . . . . . . 15 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
123, 11syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ UHGraph → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1312adantr 479 . . . . . . . . . . . . 13 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝑦 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑦) ≠ ∅))
1413imp 405 . . . . . . . . . . . 12 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑦) ≠ ∅)
15 fvexd 6908 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ V)
16 id 22 . . . . . . . . . . . . 13 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆)
1715, 16elpwd 4603 . . . . . . . . . . . 12 (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆)
1814, 17anim12ci 612 . . . . . . . . . . 11 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
19 eldifsn 4785 . . . . . . . . . . 11 (((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ (((iEdg‘𝐺)‘𝑦) ∈ 𝒫 𝑆 ∧ ((iEdg‘𝐺)‘𝑦) ≠ ∅))
2018, 19sylibr 233 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) ∧ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆) → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
2120ex 411 . . . . . . . . 9 (((𝐺 ∈ UHGraph ∧ 𝑆𝑉) ∧ 𝑦 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2221ralrimiva 3136 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
23 fveq2 6893 . . . . . . . . . 10 (𝑥 = 𝑦 → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘𝑦))
2423sseq1d 4010 . . . . . . . . 9 (𝑥 = 𝑦 → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑆 ↔ ((iEdg‘𝐺)‘𝑦) ⊆ 𝑆))
2524ralrab 3686 . . . . . . . 8 (∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑦) ⊆ 𝑆 → ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
2622, 25sylibr 233 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅}))
27 ffun 6723 . . . . . . . . . . 11 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → Fun (iEdg‘𝐺))
28 ssrab2 4073 . . . . . . . . . . 11 {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)
2927, 28jctir 519 . . . . . . . . . 10 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
303, 29syl 17 . . . . . . . . 9 (𝐺 ∈ UHGraph → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
3130adantr 479 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)))
32 funimass4 6959 . . . . . . . 8 ((Fun (iEdg‘𝐺) ∧ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ⊆ dom (iEdg‘𝐺)) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3331, 32syl 17 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}) ↔ ∀𝑦 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆} ((iEdg‘𝐺)‘𝑦) ∈ (𝒫 𝑆 ∖ {∅})))
3426, 33mpbird 256 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (𝒫 𝑆 ∖ {∅}))
357, 34eqsstrid 4027 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) “ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) ⊆ (𝒫 𝑆 ∖ {∅}))
364, 6, 35fssrescdmd 7132 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
37 resdmres 6235 . . . . . 6 ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})
3837eqcomi 2735 . . . . 5 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) = ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
3938feq1i 6711 . . . 4 (((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
4036, 39sylibr 233 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅}))
411, 2isubgriedg 47466 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
4241dmeqd 5904 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → dom (iEdg‘(𝐺 ISubGr 𝑆)) = dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
431isubgrvtx 47468 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
4443pweqd 4614 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) = 𝒫 𝑆)
4544difeq1d 4117 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) = (𝒫 𝑆 ∖ {∅}))
4641, 42, 45feq123d 6709 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}) ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}):dom ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})⟶(𝒫 𝑆 ∖ {∅})))
4740, 46mpbird 256 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅}))
48 ovexd 7451 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ V)
49 eqid 2726 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
50 eqid 2726 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
5149, 50isuhgr 28993 . . 3 ((𝐺 ISubGr 𝑆) ∈ V → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5248, 51syl 17 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) ∈ UHGraph ↔ (iEdg‘(𝐺 ISubGr 𝑆)):dom (iEdg‘(𝐺 ISubGr 𝑆))⟶(𝒫 (Vtx‘(𝐺 ISubGr 𝑆)) ∖ {∅})))
5347, 52mpbird 256 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  {crab 3419  Vcvv 3462  cdif 3943  wss 3946  c0 4322  𝒫 cpw 4597  {csn 4623  dom cdm 5674  cres 5676  cima 5677  Fun wfun 6540  wf 6542  cfv 6546  (class class class)co 7416  Vtxcvtx 28929  iEdgciedg 28930  UHGraphcuhgr 28989   ISubGr cisubgr 47463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-vtx 28931  df-iedg 28932  df-uhgr 28991  df-isubgr 47464
This theorem is referenced by:  isubgrsubgr  47470  grlicref  47538  grlicsym  47539
  Copyright terms: Public domain W3C validator