Step | Hyp | Ref
| Expression |
1 | | dmres 5913 |
. . . . 5
⊢ dom
(𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) |
2 | 1 | imaeq2i 5967 |
. . . 4
⊢ (𝐹 “ dom (𝐹 ↾ 𝐴)) = (𝐹 “ (𝐴 ∩ dom 𝐹)) |
3 | | imadmres 6137 |
. . . 4
⊢ (𝐹 “ dom (𝐹 ↾ 𝐴)) = (𝐹 “ 𝐴) |
4 | 2, 3 | eqtr3i 2768 |
. . 3
⊢ (𝐹 “ (𝐴 ∩ dom 𝐹)) = (𝐹 “ 𝐴) |
5 | 4 | sseq2i 3950 |
. 2
⊢ (𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ↔ 𝐵 ⊆ (𝐹 “ 𝐴)) |
6 | | ssrab2 4013 |
. . . 4
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) |
7 | | ssel2 3916 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) |
8 | 7 | adantll 711 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) |
9 | | fvelima 6835 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧) |
10 | 9 | ex 413 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧)) |
11 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → ∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧)) |
12 | | eleq1a 2834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐵 → ((𝐹‘𝑤) = 𝑧 → (𝐹‘𝑤) ∈ 𝐵)) |
13 | 12 | anim2d 612 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵))) |
14 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
15 | 14 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑦) ∈ 𝐵 ↔ (𝐹‘𝑤) ∈ 𝐵)) |
16 | 15 | elrab 3624 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ↔ (𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵)) |
17 | 13, 16 | syl6ibr 251 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → 𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
18 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝐹‘𝑤) = 𝑧) |
19 | 17, 18 | jca2 514 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝐵 → ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) = 𝑧) → (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ∧ (𝐹‘𝑤) = 𝑧))) |
20 | 19 | reximdv2 3199 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐵 → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
22 | | funfn 6464 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
23 | | inss2 4163 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹 |
24 | 6, 23 | sstri 3930 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ dom 𝐹 |
25 | | fvelimab 6841 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ dom 𝐹) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
26 | 24, 25 | mpan2 688 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn dom 𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
27 | 22, 26 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) ↔ ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
29 | 21, 28 | sylibrd 258 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (∃𝑤 ∈ (𝐴 ∩ dom 𝐹)(𝐹‘𝑤) = 𝑧 → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
30 | 11, 29 | syld 47 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
31 | 30 | adantlr 712 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ (𝐹 “ (𝐴 ∩ dom 𝐹)) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
32 | 8, 31 | mpd 15 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
33 | 32 | ex 413 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ 𝐵 → 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
34 | | fvelima 6835 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧) |
35 | 34 | ex 413 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → ∃𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧)) |
36 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑤) = 𝑧 → ((𝐹‘𝑤) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
37 | 36 | biimpcd 248 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑤) ∈ 𝐵 → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
38 | 37 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ (𝐴 ∩ dom 𝐹) ∧ (𝐹‘𝑤) ∈ 𝐵) → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
39 | 16, 38 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → ((𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵)) |
40 | 39 | rexlimiv 3209 |
. . . . . . . 8
⊢
(∃𝑤 ∈
{𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} (𝐹‘𝑤) = 𝑧 → 𝑧 ∈ 𝐵) |
41 | 35, 40 | syl6 35 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → 𝑧 ∈ 𝐵)) |
42 | 41 | adantr 481 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}) → 𝑧 ∈ 𝐵)) |
43 | 33, 42 | impbid 211 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
44 | 43 | eqrdv 2736 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
45 | | ssimaex.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
46 | 45 | inex1 5241 |
. . . . . 6
⊢ (𝐴 ∩ dom 𝐹) ∈ V |
47 | 46 | rabex 5256 |
. . . . 5
⊢ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ∈ V |
48 | | sseq1 3946 |
. . . . . 6
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝑥 ⊆ (𝐴 ∩ dom 𝐹) ↔ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹))) |
49 | | imaeq2 5965 |
. . . . . . 7
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝐹 “ 𝑥) = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) |
50 | 49 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → (𝐵 = (𝐹 “ 𝑥) ↔ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵}))) |
51 | 48, 50 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} → ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) ↔ ({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})))) |
52 | 47, 51 | spcev 3545 |
. . . 4
⊢ (({𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵} ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ {𝑦 ∈ (𝐴 ∩ dom 𝐹) ∣ (𝐹‘𝑦) ∈ 𝐵})) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥))) |
53 | 6, 44, 52 | sylancr 587 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥))) |
54 | | inss1 4162 |
. . . . . 6
⊢ (𝐴 ∩ dom 𝐹) ⊆ 𝐴 |
55 | | sstr 3929 |
. . . . . 6
⊢ ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ (𝐴 ∩ dom 𝐹) ⊆ 𝐴) → 𝑥 ⊆ 𝐴) |
56 | 54, 55 | mpan2 688 |
. . . . 5
⊢ (𝑥 ⊆ (𝐴 ∩ dom 𝐹) → 𝑥 ⊆ 𝐴) |
57 | 56 | anim1i 615 |
. . . 4
⊢ ((𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) → (𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
58 | 57 | eximi 1837 |
. . 3
⊢
(∃𝑥(𝑥 ⊆ (𝐴 ∩ dom 𝐹) ∧ 𝐵 = (𝐹 “ 𝑥)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
59 | 53, 58 | syl 17 |
. 2
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ (𝐴 ∩ dom 𝐹))) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |
60 | 5, 59 | sylan2br 595 |
1
⊢ ((Fun
𝐹 ∧ 𝐵 ⊆ (𝐹 “ 𝐴)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝐵 = (𝐹 “ 𝑥))) |