Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclimalb2 Structured version   Visualization version   GIF version

Theorem trclimalb2 43739
Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.)
Assertion
Ref Expression
trclimalb2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)

Proof of Theorem trclimalb2
Dummy variables 𝑥 𝑘 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3501 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 480 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑅 ∈ V)
3 oveq1 7438 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑘) = (𝑅𝑟𝑘))
43iuneq2d 5022 . . . . . 6 (𝑟 = 𝑅 𝑘 ∈ ℕ (𝑟𝑟𝑘) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
5 dftrcl3 43733 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑘 ∈ ℕ (𝑟𝑟𝑘))
6 nnex 12272 . . . . . . 7 ℕ ∈ V
7 ovex 7464 . . . . . . 7 (𝑅𝑟𝑘) ∈ V
86, 7iunex 7993 . . . . . 6 𝑘 ∈ ℕ (𝑅𝑟𝑘) ∈ V
94, 5, 8fvmpt 7016 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
109imaeq1d 6077 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴))
11 imaiun1 43664 . . . 4 ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴)
1210, 11eqtrdi 2793 . . 3 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
132, 12syl 17 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
14 oveq2 7439 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1514imaeq1d 6077 . . . . . . . 8 (𝑥 = 1 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟1) “ 𝐴))
1615sseq1d 4015 . . . . . . 7 (𝑥 = 1 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵))
1716imbi2d 340 . . . . . 6 (𝑥 = 1 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)))
18 oveq2 7439 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
1918imaeq1d 6077 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑦) “ 𝐴))
2019sseq1d 4015 . . . . . . 7 (𝑥 = 𝑦 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵))
2120imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵)))
22 oveq2 7439 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322imaeq1d 6077 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟(𝑦 + 1)) “ 𝐴))
2423sseq1d 4015 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))
2524imbi2d 340 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
26 oveq2 7439 . . . . . . . . 9 (𝑥 = 𝑘 → (𝑅𝑟𝑥) = (𝑅𝑟𝑘))
2726imaeq1d 6077 . . . . . . . 8 (𝑥 = 𝑘 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑘) “ 𝐴))
2827sseq1d 4015 . . . . . . 7 (𝑥 = 𝑘 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
2928imbi2d 340 . . . . . 6 (𝑥 = 𝑘 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)))
30 relexp1g 15065 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
3130imaeq1d 6077 . . . . . . . 8 (𝑅𝑉 → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
3231adantr 480 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
33 ssun1 4178 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
34 imass2 6120 . . . . . . . . 9 (𝐴 ⊆ (𝐴𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
3533, 34mp1i 13 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
36 simpr 484 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
3735, 36sstrd 3994 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ 𝐵)
3832, 37eqsstrd 4018 . . . . . 6 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)
39 simp2l 1200 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑅𝑉)
40 simp1 1137 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑦 ∈ ℕ)
41 relexpsucnnl 15069 . . . . . . . . . . . 12 ((𝑅𝑉𝑦 ∈ ℕ) → (𝑅𝑟(𝑦 + 1)) = (𝑅 ∘ (𝑅𝑟𝑦)))
4241imaeq1d 6077 . . . . . . . . . . 11 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴))
43 imaco 6271 . . . . . . . . . . 11 ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴))
4442, 43eqtrdi 2793 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
4539, 40, 44syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
46 imass2 6120 . . . . . . . . . . 11 (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
47463ad2ant3 1136 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
48 ssun2 4179 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
49 imass2 6120 . . . . . . . . . . . 12 (𝐵 ⊆ (𝐴𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
5048, 49mp1i 13 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
51 simp2r 1201 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
5250, 51sstrd 3994 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ 𝐵)
5347, 52sstrd 3994 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ 𝐵)
5445, 53eqsstrd 4018 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)
55543exp 1120 . . . . . . 7 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5655a2d 29 . . . . . 6 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5717, 21, 25, 29, 38, 56nnind 12284 . . . . 5 (𝑘 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5857com12 32 . . . 4 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑘 ∈ ℕ → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5958ralrimiv 3145 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
60 iunss 5045 . . 3 ( 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵 ↔ ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6159, 60sylibr 234 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6213, 61eqsstrd 4018 1 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cun 3949  wss 3951   ciun 4991  cima 5688  ccom 5689  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266  t+ctcl 15024  𝑟crelexp 15058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-trcl 15026  df-relexp 15059
This theorem is referenced by:  brtrclfv2  43740  frege77d  43759
  Copyright terms: Public domain W3C validator