Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → 𝑅 ∈ V) |
3 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑘) = (𝑅↑𝑟𝑘)) |
4 | 3 | iuneq2d 4953 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ∪
𝑘 ∈ ℕ (𝑟↑𝑟𝑘) = ∪ 𝑘 ∈ ℕ (𝑅↑𝑟𝑘)) |
5 | | dftrcl3 41328 |
. . . . . 6
⊢ t+ =
(𝑟 ∈ V ↦
∪ 𝑘 ∈ ℕ (𝑟↑𝑟𝑘)) |
6 | | nnex 11979 |
. . . . . . 7
⊢ ℕ
∈ V |
7 | | ovex 7308 |
. . . . . . 7
⊢ (𝑅↑𝑟𝑘) ∈ V |
8 | 6, 7 | iunex 7811 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ (𝑅↑𝑟𝑘) ∈ V |
9 | 4, 5, 8 | fvmpt 6875 |
. . . . 5
⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑘 ∈ ℕ (𝑅↑𝑟𝑘)) |
10 | 9 | imaeq1d 5968 |
. . . 4
⊢ (𝑅 ∈ V →
((t+‘𝑅) “ 𝐴) = (∪ 𝑘 ∈ ℕ (𝑅↑𝑟𝑘) “ 𝐴)) |
11 | | imaiun1 41259 |
. . . 4
⊢ (∪ 𝑘 ∈ ℕ (𝑅↑𝑟𝑘) “ 𝐴) = ∪
𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴) |
12 | 10, 11 | eqtrdi 2794 |
. . 3
⊢ (𝑅 ∈ V →
((t+‘𝑅) “ 𝐴) = ∪ 𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴)) |
13 | 2, 12 | syl 17 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) = ∪
𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴)) |
14 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟1)) |
15 | 14 | imaeq1d 5968 |
. . . . . . . 8
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝑥) “ 𝐴) = ((𝑅↑𝑟1) “ 𝐴)) |
16 | 15 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑥 = 1 → (((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅↑𝑟1) “ 𝐴) ⊆ 𝐵)) |
17 | 16 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 1 → (((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟1) “ 𝐴) ⊆ 𝐵))) |
18 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑦)) |
19 | 18 | imaeq1d 5968 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝑥) “ 𝐴) = ((𝑅↑𝑟𝑦) “ 𝐴)) |
20 | 19 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵)) |
21 | 20 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵))) |
22 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟𝑥) = (𝑅↑𝑟(𝑦 + 1))) |
23 | 22 | imaeq1d 5968 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝑥) “ 𝐴) = ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴)) |
24 | 23 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)) |
25 | 24 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))) |
26 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑘 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑘)) |
27 | 26 | imaeq1d 5968 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → ((𝑅↑𝑟𝑥) “ 𝐴) = ((𝑅↑𝑟𝑘) “ 𝐴)) |
28 | 27 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵)) |
29 | 28 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵))) |
30 | | relexp1g 14737 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
31 | 30 | imaeq1d 5968 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) “ 𝐴) = (𝑅 “ 𝐴)) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟1) “ 𝐴) = (𝑅 “ 𝐴)) |
33 | | ssun1 4106 |
. . . . . . . . 9
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
34 | | imass2 6010 |
. . . . . . . . 9
⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → (𝑅 “ 𝐴) ⊆ (𝑅 “ (𝐴 ∪ 𝐵))) |
35 | 33, 34 | mp1i 13 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → (𝑅 “ 𝐴) ⊆ (𝑅 “ (𝐴 ∪ 𝐵))) |
36 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) |
37 | 35, 36 | sstrd 3931 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → (𝑅 “ 𝐴) ⊆ 𝐵) |
38 | 32, 37 | eqsstrd 3959 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟1) “ 𝐴) ⊆ 𝐵) |
39 | | simp2l 1198 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑅 ∈ 𝑉) |
40 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑦 ∈ ℕ) |
41 | | relexpsucnnl 14741 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ) → (𝑅↑𝑟(𝑦 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑦))) |
42 | 41 | imaeq1d 5968 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) = ((𝑅 ∘ (𝑅↑𝑟𝑦)) “ 𝐴)) |
43 | | imaco 6155 |
. . . . . . . . . . 11
⊢ ((𝑅 ∘ (𝑅↑𝑟𝑦)) “ 𝐴) = (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴)) |
44 | 42, 43 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ ℕ) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴))) |
45 | 39, 40, 44 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴))) |
46 | | imass2 6010 |
. . . . . . . . . . 11
⊢ (((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵 → (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴)) ⊆ (𝑅 “ 𝐵)) |
47 | 46 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴)) ⊆ (𝑅 “ 𝐵)) |
48 | | ssun2 4107 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
49 | | imass2 6010 |
. . . . . . . . . . . 12
⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → (𝑅 “ 𝐵) ⊆ (𝑅 “ (𝐴 ∪ 𝐵))) |
50 | 48, 49 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ 𝐵) ⊆ (𝑅 “ (𝐴 ∪ 𝐵))) |
51 | | simp2r 1199 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) |
52 | 50, 51 | sstrd 3931 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ 𝐵) ⊆ 𝐵) |
53 | 47, 52 | sstrd 3931 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅↑𝑟𝑦) “ 𝐴)) ⊆ 𝐵) |
54 | 45, 53 | eqsstrd 3959 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) ∧ ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵) |
55 | 54 | 3exp 1118 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → (((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵 → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))) |
56 | 55 | a2d 29 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → (((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))) |
57 | 17, 21, 25, 29, 38, 56 | nnind 11991 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵)) |
58 | 57 | com12 32 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → (𝑘 ∈ ℕ → ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵)) |
59 | 58 | ralrimiv 3102 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ∀𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵) |
60 | | iunss 4975 |
. . 3
⊢ (∪ 𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵 ↔ ∀𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵) |
61 | 59, 60 | sylibr 233 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ∪
𝑘 ∈ ℕ ((𝑅↑𝑟𝑘) “ 𝐴) ⊆ 𝐵) |
62 | 13, 61 | eqsstrd 3959 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑅 “ (𝐴 ∪ 𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵) |