Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclimalb2 Structured version   Visualization version   GIF version

Theorem trclimalb2 43715
Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.)
Assertion
Ref Expression
trclimalb2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)

Proof of Theorem trclimalb2
Dummy variables 𝑥 𝑘 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 480 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑅 ∈ V)
3 oveq1 7394 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑘) = (𝑅𝑟𝑘))
43iuneq2d 4986 . . . . . 6 (𝑟 = 𝑅 𝑘 ∈ ℕ (𝑟𝑟𝑘) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
5 dftrcl3 43709 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑘 ∈ ℕ (𝑟𝑟𝑘))
6 nnex 12192 . . . . . . 7 ℕ ∈ V
7 ovex 7420 . . . . . . 7 (𝑅𝑟𝑘) ∈ V
86, 7iunex 7947 . . . . . 6 𝑘 ∈ ℕ (𝑅𝑟𝑘) ∈ V
94, 5, 8fvmpt 6968 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
109imaeq1d 6030 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴))
11 imaiun1 43640 . . . 4 ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴)
1210, 11eqtrdi 2780 . . 3 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
132, 12syl 17 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
14 oveq2 7395 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1514imaeq1d 6030 . . . . . . . 8 (𝑥 = 1 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟1) “ 𝐴))
1615sseq1d 3978 . . . . . . 7 (𝑥 = 1 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵))
1716imbi2d 340 . . . . . 6 (𝑥 = 1 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)))
18 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
1918imaeq1d 6030 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑦) “ 𝐴))
2019sseq1d 3978 . . . . . . 7 (𝑥 = 𝑦 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵))
2120imbi2d 340 . . . . . 6 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵)))
22 oveq2 7395 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322imaeq1d 6030 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟(𝑦 + 1)) “ 𝐴))
2423sseq1d 3978 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))
2524imbi2d 340 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
26 oveq2 7395 . . . . . . . . 9 (𝑥 = 𝑘 → (𝑅𝑟𝑥) = (𝑅𝑟𝑘))
2726imaeq1d 6030 . . . . . . . 8 (𝑥 = 𝑘 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑘) “ 𝐴))
2827sseq1d 3978 . . . . . . 7 (𝑥 = 𝑘 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
2928imbi2d 340 . . . . . 6 (𝑥 = 𝑘 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)))
30 relexp1g 14992 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
3130imaeq1d 6030 . . . . . . . 8 (𝑅𝑉 → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
3231adantr 480 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
33 ssun1 4141 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
34 imass2 6073 . . . . . . . . 9 (𝐴 ⊆ (𝐴𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
3533, 34mp1i 13 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
36 simpr 484 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
3735, 36sstrd 3957 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ 𝐵)
3832, 37eqsstrd 3981 . . . . . 6 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)
39 simp2l 1200 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑅𝑉)
40 simp1 1136 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑦 ∈ ℕ)
41 relexpsucnnl 14996 . . . . . . . . . . . 12 ((𝑅𝑉𝑦 ∈ ℕ) → (𝑅𝑟(𝑦 + 1)) = (𝑅 ∘ (𝑅𝑟𝑦)))
4241imaeq1d 6030 . . . . . . . . . . 11 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴))
43 imaco 6224 . . . . . . . . . . 11 ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴))
4442, 43eqtrdi 2780 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
4539, 40, 44syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
46 imass2 6073 . . . . . . . . . . 11 (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
47463ad2ant3 1135 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
48 ssun2 4142 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
49 imass2 6073 . . . . . . . . . . . 12 (𝐵 ⊆ (𝐴𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
5048, 49mp1i 13 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
51 simp2r 1201 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
5250, 51sstrd 3957 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ 𝐵)
5347, 52sstrd 3957 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ 𝐵)
5445, 53eqsstrd 3981 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)
55543exp 1119 . . . . . . 7 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5655a2d 29 . . . . . 6 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5717, 21, 25, 29, 38, 56nnind 12204 . . . . 5 (𝑘 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5857com12 32 . . . 4 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑘 ∈ ℕ → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5958ralrimiv 3124 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
60 iunss 5009 . . 3 ( 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵 ↔ ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6159, 60sylibr 234 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6213, 61eqsstrd 3981 1 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cun 3912  wss 3914   ciun 4955  cima 5641  ccom 5642  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071  cn 12186  t+ctcl 14951  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-trcl 14953  df-relexp 14986
This theorem is referenced by:  brtrclfv2  43716  frege77d  43735
  Copyright terms: Public domain W3C validator