Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclimalb2 Structured version   Visualization version   GIF version

Theorem trclimalb2 41334
Description: Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.)
Assertion
Ref Expression
trclimalb2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)

Proof of Theorem trclimalb2
Dummy variables 𝑥 𝑘 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 481 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑅 ∈ V)
3 oveq1 7282 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑘) = (𝑅𝑟𝑘))
43iuneq2d 4953 . . . . . 6 (𝑟 = 𝑅 𝑘 ∈ ℕ (𝑟𝑟𝑘) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
5 dftrcl3 41328 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑘 ∈ ℕ (𝑟𝑟𝑘))
6 nnex 11979 . . . . . . 7 ℕ ∈ V
7 ovex 7308 . . . . . . 7 (𝑅𝑟𝑘) ∈ V
86, 7iunex 7811 . . . . . 6 𝑘 ∈ ℕ (𝑅𝑟𝑘) ∈ V
94, 5, 8fvmpt 6875 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑘 ∈ ℕ (𝑅𝑟𝑘))
109imaeq1d 5968 . . . 4 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴))
11 imaiun1 41259 . . . 4 ( 𝑘 ∈ ℕ (𝑅𝑟𝑘) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴)
1210, 11eqtrdi 2794 . . 3 (𝑅 ∈ V → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
132, 12syl 17 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) = 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴))
14 oveq2 7283 . . . . . . . . 9 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
1514imaeq1d 5968 . . . . . . . 8 (𝑥 = 1 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟1) “ 𝐴))
1615sseq1d 3952 . . . . . . 7 (𝑥 = 1 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵))
1716imbi2d 341 . . . . . 6 (𝑥 = 1 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)))
18 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
1918imaeq1d 5968 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑦) “ 𝐴))
2019sseq1d 3952 . . . . . . 7 (𝑥 = 𝑦 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵))
2120imbi2d 341 . . . . . 6 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵)))
22 oveq2 7283 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2322imaeq1d 5968 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟(𝑦 + 1)) “ 𝐴))
2423sseq1d 3952 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵))
2524imbi2d 341 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
26 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝑘 → (𝑅𝑟𝑥) = (𝑅𝑟𝑘))
2726imaeq1d 5968 . . . . . . . 8 (𝑥 = 𝑘 → ((𝑅𝑟𝑥) “ 𝐴) = ((𝑅𝑟𝑘) “ 𝐴))
2827sseq1d 3952 . . . . . . 7 (𝑥 = 𝑘 → (((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵 ↔ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
2928imbi2d 341 . . . . . 6 (𝑥 = 𝑘 → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑥) “ 𝐴) ⊆ 𝐵) ↔ ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)))
30 relexp1g 14737 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
3130imaeq1d 5968 . . . . . . . 8 (𝑅𝑉 → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
3231adantr 481 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) = (𝑅𝐴))
33 ssun1 4106 . . . . . . . . 9 𝐴 ⊆ (𝐴𝐵)
34 imass2 6010 . . . . . . . . 9 (𝐴 ⊆ (𝐴𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
3533, 34mp1i 13 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝑅 “ (𝐴𝐵)))
36 simpr 485 . . . . . . . 8 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
3735, 36sstrd 3931 . . . . . . 7 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑅𝐴) ⊆ 𝐵)
3832, 37eqsstrd 3959 . . . . . 6 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟1) “ 𝐴) ⊆ 𝐵)
39 simp2l 1198 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑅𝑉)
40 simp1 1135 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → 𝑦 ∈ ℕ)
41 relexpsucnnl 14741 . . . . . . . . . . . 12 ((𝑅𝑉𝑦 ∈ ℕ) → (𝑅𝑟(𝑦 + 1)) = (𝑅 ∘ (𝑅𝑟𝑦)))
4241imaeq1d 5968 . . . . . . . . . . 11 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴))
43 imaco 6155 . . . . . . . . . . 11 ((𝑅 ∘ (𝑅𝑟𝑦)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴))
4442, 43eqtrdi 2794 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ ℕ) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
4539, 40, 44syl2anc 584 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) = (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)))
46 imass2 6010 . . . . . . . . . . 11 (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
47463ad2ant3 1134 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ (𝑅𝐵))
48 ssun2 4107 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
49 imass2 6010 . . . . . . . . . . . 12 (𝐵 ⊆ (𝐴𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
5048, 49mp1i 13 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ (𝑅 “ (𝐴𝐵)))
51 simp2r 1199 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ (𝐴𝐵)) ⊆ 𝐵)
5250, 51sstrd 3931 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅𝐵) ⊆ 𝐵)
5347, 52sstrd 3931 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → (𝑅 “ ((𝑅𝑟𝑦) “ 𝐴)) ⊆ 𝐵)
5445, 53eqsstrd 3959 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) ∧ ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)
55543exp 1118 . . . . . . 7 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵 → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5655a2d 29 . . . . . 6 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑦) “ 𝐴) ⊆ 𝐵) → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟(𝑦 + 1)) “ 𝐴) ⊆ 𝐵)))
5717, 21, 25, 29, 38, 56nnind 11991 . . . . 5 (𝑘 ∈ ℕ → ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5857com12 32 . . . 4 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → (𝑘 ∈ ℕ → ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵))
5958ralrimiv 3102 . . 3 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
60 iunss 4975 . . 3 ( 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵 ↔ ∀𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6159, 60sylibr 233 . 2 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → 𝑘 ∈ ℕ ((𝑅𝑟𝑘) “ 𝐴) ⊆ 𝐵)
6213, 61eqsstrd 3959 1 ((𝑅𝑉 ∧ (𝑅 “ (𝐴𝐵)) ⊆ 𝐵) → ((t+‘𝑅) “ 𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  wss 3887   ciun 4924  cima 5592  ccom 5593  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874  cn 11973  t+ctcl 14696  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-trcl 14698  df-relexp 14731
This theorem is referenced by:  brtrclfv2  41335  frege77d  41354
  Copyright terms: Public domain W3C validator