Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo2 Structured version   Visualization version   GIF version

Theorem inecmo2 36467
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) (Revised by Peter Mazsa, 2-Sep-2021.)
Assertion
Ref Expression
inecmo2 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝑅,𝑣,𝑥

Proof of Theorem inecmo2
StepHypRef Expression
1 id 22 . . 3 (𝑢 = 𝑣𝑢 = 𝑣)
21inecmo 36466 . 2 (Rel 𝑅 → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥))
32pm5.32ri 575 1 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843  wal 1539   = wceq 1541  wral 3065  ∃*wrmo 3068  cin 3890  c0 4261   class class class wbr 5078  Rel wrel 5593  [cec 8470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rmo 3073  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ec 8474
This theorem is referenced by:  inecmo3  36472  dfeldisj5  36811
  Copyright terms: Public domain W3C validator