| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo2 | Structured version Visualization version GIF version | ||
| Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) (Revised by Peter Mazsa, 2-Sep-2021.) |
| Ref | Expression |
|---|---|
| inecmo2 | ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑢 = 𝑣 → 𝑢 = 𝑣) | |
| 2 | 1 | inecmo 38373 | . 2 ⊢ (Rel 𝑅 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥)) |
| 3 | 2 | pm5.32ri 575 | 1 ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∀wral 3051 ∃*wrmo 3358 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 Rel wrel 5659 [cec 8717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rmo 3359 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 |
| This theorem is referenced by: inecmo3 38379 dfeldisj5 38739 |
| Copyright terms: Public domain | W3C validator |