Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo Structured version   Visualization version   GIF version

Theorem inecmo 38337
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.)
Hypothesis
Ref Expression
inecmo.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
inecmo (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑥,𝐶,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem inecmo
StepHypRef Expression
1 ineleq 38336 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
2 ralcom4 3263 . . 3 (∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
31, 2bitri 275 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
4 inecmo.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
54breq1d 5117 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑅𝑧𝐶𝑅𝑧))
65rmo4 3701 . . . 4 (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦))
7 relelec 8718 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅𝐵𝑅𝑧))
8 relelec 8718 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅𝐶𝑅𝑧))
97, 8anbi12d 632 . . . . . 6 (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧𝐶𝑅𝑧)))
109imbi1d 341 . . . . 5 (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
11102ralbidv 3201 . . . 4 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
126, 11bitr4id 290 . . 3 (Rel 𝑅 → (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
1312albidv 1920 . 2 (Rel 𝑅 → (∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
143, 13bitr4id 290 1 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  wral 3044  ∃*wrmo 3353  cin 3913  c0 4296   class class class wbr 5107  Rel wrel 5643  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by:  inecmo2  38338  ineccnvmo  38339  disjres  38736
  Copyright terms: Public domain W3C validator