![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo | Structured version Visualization version GIF version |
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) |
Ref | Expression |
---|---|
inecmo.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
inecmo | ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineleq 37527 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
2 | ralcom4 3282 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) |
4 | inecmo.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
5 | 4 | breq1d 5158 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
6 | 5 | rmo4 3726 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦)) |
7 | relelec 8751 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑧)) | |
8 | relelec 8751 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅 ↔ 𝐶𝑅𝑧)) | |
9 | 7, 8 | anbi12d 630 | . . . . . 6 ⊢ (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
10 | 9 | imbi1d 341 | . . . . 5 ⊢ (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
11 | 10 | 2ralbidv 3217 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
12 | 6, 11 | bitr4id 290 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
13 | 12 | albidv 1922 | . 2 ⊢ (Rel 𝑅 → (∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
14 | 3, 13 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃*wrmo 3374 ∩ cin 3947 ∅c0 4322 class class class wbr 5148 Rel wrel 5681 [cec 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8708 |
This theorem is referenced by: inecmo2 37529 ineccnvmo 37530 disjres 37918 |
Copyright terms: Public domain | W3C validator |