Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo Structured version   Visualization version   GIF version

Theorem inecmo 36414
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.)
Hypothesis
Ref Expression
inecmo.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
inecmo (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑥,𝐶,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem inecmo
StepHypRef Expression
1 ineleq 36413 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
2 ralcom4 3161 . . 3 (∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
31, 2bitri 274 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
4 inecmo.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
54breq1d 5080 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑅𝑧𝐶𝑅𝑧))
65rmo4 3660 . . . 4 (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦))
7 relelec 8501 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅𝐵𝑅𝑧))
8 relelec 8501 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅𝐶𝑅𝑧))
97, 8anbi12d 630 . . . . . 6 (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧𝐶𝑅𝑧)))
109imbi1d 341 . . . . 5 (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
11102ralbidv 3122 . . . 4 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
126, 11bitr4id 289 . . 3 (Rel 𝑅 → (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
1312albidv 1924 . 2 (Rel 𝑅 → (∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
143, 13bitr4id 289 1 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wcel 2108  wral 3063  ∃*wrmo 3066  cin 3882  c0 4253   class class class wbr 5070  Rel wrel 5585  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  inecmo2  36415  ineccnvmo  36416
  Copyright terms: Public domain W3C validator