| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo | Structured version Visualization version GIF version | ||
| Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) |
| Ref | Expression |
|---|---|
| inecmo.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| inecmo | ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineleq 38377 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
| 2 | ralcom4 3272 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) |
| 4 | inecmo.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 5 | 4 | breq1d 5134 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
| 6 | 5 | rmo4 3718 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦)) |
| 7 | relelec 8771 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑧)) | |
| 8 | relelec 8771 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅 ↔ 𝐶𝑅𝑧)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . 6 ⊢ (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
| 10 | 9 | imbi1d 341 | . . . . 5 ⊢ (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
| 11 | 10 | 2ralbidv 3209 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
| 12 | 6, 11 | bitr4id 290 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
| 13 | 12 | albidv 1920 | . 2 ⊢ (Rel 𝑅 → (∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
| 14 | 3, 13 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃*wrmo 3363 ∩ cin 3930 ∅c0 4313 class class class wbr 5124 Rel wrel 5664 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rmo 3364 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 |
| This theorem is referenced by: inecmo2 38379 ineccnvmo 38380 disjres 38767 |
| Copyright terms: Public domain | W3C validator |