Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo | Structured version Visualization version GIF version |
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) |
Ref | Expression |
---|---|
inecmo.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
inecmo | ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineleq 36486 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
2 | ralcom4 3164 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) |
4 | inecmo.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
5 | 4 | breq1d 5084 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
6 | 5 | rmo4 3665 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦)) |
7 | relelec 8543 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑧)) | |
8 | relelec 8543 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅 ↔ 𝐶𝑅𝑧)) | |
9 | 7, 8 | anbi12d 631 | . . . . . 6 ⊢ (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧))) |
10 | 9 | imbi1d 342 | . . . . 5 ⊢ (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
11 | 10 | 2ralbidv 3129 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) |
12 | 6, 11 | bitr4id 290 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
13 | 12 | albidv 1923 | . 2 ⊢ (Rel 𝑅 → (∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) |
14 | 3, 13 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃*wrmo 3067 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 Rel wrel 5594 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: inecmo2 36488 ineccnvmo 36489 |
Copyright terms: Public domain | W3C validator |