|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inecmo | Structured version Visualization version GIF version | ||
| Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) | 
| Ref | Expression | 
|---|---|
| inecmo.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| inecmo | ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineleq 38356 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
| 2 | ralcom4 3285 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)) | 
| 4 | inecmo.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 5 | 4 | breq1d 5152 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝑧 ↔ 𝐶𝑅𝑧)) | 
| 6 | 5 | rmo4 3735 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦)) | 
| 7 | relelec 8793 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑧)) | |
| 8 | relelec 8793 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅 ↔ 𝐶𝑅𝑧)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . 6 ⊢ (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧))) | 
| 10 | 9 | imbi1d 341 | . . . . 5 ⊢ (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) | 
| 11 | 10 | 2ralbidv 3220 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐵𝑅𝑧 ∧ 𝐶𝑅𝑧) → 𝑥 = 𝑦))) | 
| 12 | 6, 11 | bitr4id 290 | . . 3 ⊢ (Rel 𝑅 → (∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) | 
| 13 | 12 | albidv 1919 | . 2 ⊢ (Rel 𝑅 → (∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧 ↔ ∀𝑧∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑧 ∈ [𝐵]𝑅 ∧ 𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))) | 
| 14 | 3, 13 | bitr4id 290 | 1 ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃*wrmo 3378 ∩ cin 3949 ∅c0 4332 class class class wbr 5142 Rel wrel 5689 [cec 8744 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rmo 3379 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 | 
| This theorem is referenced by: inecmo2 38358 ineccnvmo 38359 disjres 38746 | 
| Copyright terms: Public domain | W3C validator |