Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo Structured version   Visualization version   GIF version

Theorem inecmo 35084
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.)
Hypothesis
Ref Expression
inecmo.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
inecmo (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑥,𝐶,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem inecmo
StepHypRef Expression
1 relelec 8132 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅𝐵𝑅𝑧))
2 relelec 8132 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅𝐶𝑅𝑧))
31, 2anbi12d 621 . . . . . 6 (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧𝐶𝑅𝑧)))
43imbi1d 334 . . . . 5 (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
542ralbidv 3143 . . . 4 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
6 inecmo.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
76breq1d 4935 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑅𝑧𝐶𝑅𝑧))
87rmo4 3627 . . . 4 (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦))
95, 8syl6rbbr 282 . . 3 (Rel 𝑅 → (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
109albidv 1879 . 2 (Rel 𝑅 → (∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
11 ineleq 35083 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
12 ralcom4 3176 . . 3 (∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
1311, 12bitri 267 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
1410, 13syl6rbbr 282 1 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  wal 1505   = wceq 1507  wcel 2050  wral 3082  ∃*wrmo 3085  cin 3822  c0 4172   class class class wbr 4925  Rel wrel 5408  [cec 8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-xp 5409  df-rel 5410  df-cnv 5411  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-ec 8089
This theorem is referenced by:  inecmo2  35085  ineccnvmo  35086
  Copyright terms: Public domain W3C validator