![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elixp | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 8901 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
3 | 3anass 1094 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
4 | 2, 3 | mpbiran 706 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | bitri 275 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 Fn wfn 6538 ‘cfv 6543 Xcixp 8897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ixp 8898 |
This theorem is referenced by: elixpconst 8905 ixpin 8923 ixpiin 8924 resixpfo 8936 elixpsn 8937 boxriin 8940 boxcutc 8941 ixpfi2 9356 ixpiunwdom 9591 dfac9 10137 ac9 10484 ac9s 10494 konigthlem 10569 cofucl 17845 yonedalem3 18243 psrbaglefi 21794 psrbaglefiOLD 21795 ptpjpre1 23394 ptpjcn 23434 ptpjopn 23435 ptclsg 23438 dfac14 23441 pthaus 23461 xkopt 23478 ptcmplem2 23876 ptcmplem3 23877 ptcmplem4 23878 prdsbl 24319 prdsxmslem2 24357 eulerpartlemb 33830 ptpconn 34687 finixpnum 36936 ptrest 36950 poimirlem29 36980 poimirlem30 36981 inixp 37059 prdstotbnd 37125 ioorrnopnlem 45478 hoicvr 45722 hoidmvlelem3 45771 hspdifhsp 45790 hspmbllem2 45801 |
Copyright terms: Public domain | W3C validator |