MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Structured version   Visualization version   GIF version

Theorem elixp 8880
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1 𝐹 ∈ V
Assertion
Ref Expression
elixp (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 8877 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 elixp.1 . . 3 𝐹 ∈ V
3 3anass 1094 . . 3 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
42, 3mpbiran 709 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4bitri 275 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  Vcvv 3450   Fn wfn 6509  cfv 6514  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ixp 8874
This theorem is referenced by:  elixpconst  8881  ixpin  8899  ixpiin  8900  resixpfo  8912  elixpsn  8913  boxriin  8916  boxcutc  8917  ixpfi2  9308  ixpiunwdom  9550  dfac9  10097  ac9  10443  ac9s  10453  konigthlem  10528  cofucl  17857  yonedalem3  18248  psrbaglefi  21842  ptpjpre1  23465  ptpjcn  23505  ptpjopn  23506  ptclsg  23509  dfac14  23512  pthaus  23532  xkopt  23549  ptcmplem2  23947  ptcmplem3  23948  ptcmplem4  23949  prdsbl  24386  prdsxmslem2  24424  eulerpartlemb  34366  ptpconn  35227  finixpnum  37606  ptrest  37620  poimirlem29  37650  poimirlem30  37651  inixp  37729  prdstotbnd  37795  ioorrnopnlem  46309  hoicvr  46553  hoidmvlelem3  46602  hspdifhsp  46621  hspmbllem2  46632
  Copyright terms: Public domain W3C validator