MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Structured version   Visualization version   GIF version

Theorem elixp 8650
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1 𝐹 ∈ V
Assertion
Ref Expression
elixp (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 8647 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 elixp.1 . . 3 𝐹 ∈ V
3 3anass 1093 . . 3 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
42, 3mpbiran 705 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4bitri 274 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422   Fn wfn 6413  cfv 6418  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ixp 8644
This theorem is referenced by:  elixpconst  8651  ixpin  8669  ixpiin  8670  resixpfo  8682  elixpsn  8683  boxriin  8686  boxcutc  8687  ixpfi2  9047  ixpiunwdom  9279  dfac9  9823  ac9  10170  ac9s  10180  konigthlem  10255  cofucl  17519  yonedalem3  17914  psrbaglefi  21045  psrbaglefiOLD  21046  ptpjpre1  22630  ptpjcn  22670  ptpjopn  22671  ptclsg  22674  dfac14  22677  pthaus  22697  xkopt  22714  ptcmplem2  23112  ptcmplem3  23113  ptcmplem4  23114  prdsbl  23553  prdsxmslem2  23591  eulerpartlemb  32235  ptpconn  33095  finixpnum  35689  ptrest  35703  poimirlem29  35733  poimirlem30  35734  inixp  35813  prdstotbnd  35879  ioorrnopnlem  43735  hoicvr  43976  hoidmvlelem3  44025  hspdifhsp  44044  hspmbllem2  44055
  Copyright terms: Public domain W3C validator