| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elixp | Structured version Visualization version GIF version | ||
| Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 8831 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
| 3 | 3anass 1094 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
| 4 | 2, 3 | mpbiran 709 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 Fn wfn 6481 ‘cfv 6486 Xcixp 8827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ixp 8828 |
| This theorem is referenced by: elixpconst 8835 ixpin 8853 ixpiin 8854 resixpfo 8866 elixpsn 8867 boxriin 8870 boxcutc 8871 ixpfi2 9241 ixpiunwdom 9483 dfac9 10035 ac9 10381 ac9s 10391 konigthlem 10466 cofucl 17797 yonedalem3 18188 psrbaglefi 21865 ptpjpre1 23487 ptpjcn 23527 ptpjopn 23528 ptclsg 23531 dfac14 23534 pthaus 23554 xkopt 23571 ptcmplem2 23969 ptcmplem3 23970 ptcmplem4 23971 prdsbl 24407 prdsxmslem2 24445 eulerpartlemb 34402 ptpconn 35298 finixpnum 37665 ptrest 37679 poimirlem29 37709 poimirlem30 37710 inixp 37788 prdstotbnd 37854 ioorrnopnlem 46426 hoicvr 46670 hoidmvlelem3 46719 hspdifhsp 46738 hspmbllem2 46749 |
| Copyright terms: Public domain | W3C validator |