![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elixp | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 8959 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
3 | 3anass 1095 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
4 | 2, 3 | mpbiran 708 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | bitri 275 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 Fn wfn 6568 ‘cfv 6573 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ixp 8956 |
This theorem is referenced by: elixpconst 8963 ixpin 8981 ixpiin 8982 resixpfo 8994 elixpsn 8995 boxriin 8998 boxcutc 8999 ixpfi2 9420 ixpiunwdom 9659 dfac9 10206 ac9 10552 ac9s 10562 konigthlem 10637 cofucl 17952 yonedalem3 18350 psrbaglefi 21969 ptpjpre1 23600 ptpjcn 23640 ptpjopn 23641 ptclsg 23644 dfac14 23647 pthaus 23667 xkopt 23684 ptcmplem2 24082 ptcmplem3 24083 ptcmplem4 24084 prdsbl 24525 prdsxmslem2 24563 eulerpartlemb 34333 ptpconn 35201 finixpnum 37565 ptrest 37579 poimirlem29 37609 poimirlem30 37610 inixp 37688 prdstotbnd 37754 ioorrnopnlem 46225 hoicvr 46469 hoidmvlelem3 46518 hspdifhsp 46537 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |