| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elixp | Structured version Visualization version GIF version | ||
| Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 8874 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
| 3 | 3anass 1094 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
| 4 | 2, 3 | mpbiran 709 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 Fn wfn 6506 ‘cfv 6511 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-ixp 8871 |
| This theorem is referenced by: elixpconst 8878 ixpin 8896 ixpiin 8897 resixpfo 8909 elixpsn 8910 boxriin 8913 boxcutc 8914 ixpfi2 9301 ixpiunwdom 9543 dfac9 10090 ac9 10436 ac9s 10446 konigthlem 10521 cofucl 17850 yonedalem3 18241 psrbaglefi 21835 ptpjpre1 23458 ptpjcn 23498 ptpjopn 23499 ptclsg 23502 dfac14 23505 pthaus 23525 xkopt 23542 ptcmplem2 23940 ptcmplem3 23941 ptcmplem4 23942 prdsbl 24379 prdsxmslem2 24417 eulerpartlemb 34359 ptpconn 35220 finixpnum 37599 ptrest 37613 poimirlem29 37643 poimirlem30 37644 inixp 37722 prdstotbnd 37788 ioorrnopnlem 46302 hoicvr 46546 hoidmvlelem3 46595 hspdifhsp 46614 hspmbllem2 46625 |
| Copyright terms: Public domain | W3C validator |