| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elixp | Structured version Visualization version GIF version | ||
| Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| elixp | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 8835 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | elixp.1 | . . 3 ⊢ 𝐹 ∈ V | |
| 3 | 3anass 1094 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
| 4 | 2, 3 | mpbiran 709 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 Fn wfn 6481 ‘cfv 6486 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-ixp 8832 |
| This theorem is referenced by: elixpconst 8839 ixpin 8857 ixpiin 8858 resixpfo 8870 elixpsn 8871 boxriin 8874 boxcutc 8875 ixpfi2 9259 ixpiunwdom 9501 dfac9 10050 ac9 10396 ac9s 10406 konigthlem 10481 cofucl 17813 yonedalem3 18204 psrbaglefi 21851 ptpjpre1 23474 ptpjcn 23514 ptpjopn 23515 ptclsg 23518 dfac14 23521 pthaus 23541 xkopt 23558 ptcmplem2 23956 ptcmplem3 23957 ptcmplem4 23958 prdsbl 24395 prdsxmslem2 24433 eulerpartlemb 34335 ptpconn 35205 finixpnum 37584 ptrest 37598 poimirlem29 37628 poimirlem30 37629 inixp 37707 prdstotbnd 37773 ioorrnopnlem 46286 hoicvr 46530 hoidmvlelem3 46579 hspdifhsp 46598 hspmbllem2 46609 |
| Copyright terms: Public domain | W3C validator |