MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Structured version   Visualization version   GIF version

Theorem elixp 8182
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1 𝐹 ∈ V
Assertion
Ref Expression
elixp (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 8179 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 elixp.1 . . 3 𝐹 ∈ V
3 3anass 1122 . . 3 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
42, 3mpbiran 702 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4bitri 267 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  w3a 1113  wcel 2166  wral 3117  Vcvv 3414   Fn wfn 6118  cfv 6123  Xcixp 8175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fn 6126  df-fv 6131  df-ixp 8176
This theorem is referenced by:  elixpconst  8183  ixpin  8200  ixpiin  8201  resixpfo  8213  elixpsn  8214  boxriin  8217  boxcutc  8218  ixpfi2  8533  ixpiunwdom  8765  dfac9  9273  ac9  9620  ac9s  9630  konigthlem  9705  xpscf  16579  cofucl  16900  yonedalem3  17273  psrbaglefi  19733  ptpjpre1  21745  ptpjcn  21785  ptpjopn  21786  ptclsg  21789  dfac14  21792  pthaus  21812  xkopt  21829  ptcmplem2  22227  ptcmplem3  22228  ptcmplem4  22229  prdsbl  22666  prdsxmslem2  22704  eulerpartlemb  30975  ptpconn  31761  finixpnum  33937  ptrest  33952  poimirlem29  33982  poimirlem30  33983  inixp  34066  prdstotbnd  34135  ioorrnopnlem  41315  hoicvr  41556  hoidmvlelem3  41605  hspdifhsp  41624  hspmbllem2  41635
  Copyright terms: Public domain W3C validator